Comparison of six evapotranspiration models for a surface irrigated maize agro-ecosystem in Northern Italy
Author
Abstract
Suggested Citation
DOI: 10.1016/j.agwat.2013.08.009
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Kato, Tomomichi & Kimura, Reiji & Kamichika, Makio, 2004. "Estimation of evapotranspiration, transpiration ratio and water-use efficiency from a sparse canopy using a compartment model," Agricultural Water Management, Elsevier, vol. 65(3), pages 173-191, March.
- Alves, Isabel & Santos Pereira, Luis, 2000. "Modelling surface resistance from climatic variables?," Agricultural Water Management, Elsevier, vol. 42(3), pages 371-385, January.
- Anadranistakis, M. & Liakatas, A. & Kerkides, P. & Rizos, S. & Gavanosis, J. & Poulovassilis, A., 2000. "Crop water requirements model tested for crops grown in Greece," Agricultural Water Management, Elsevier, vol. 45(3), pages 297-316, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhang, Zhongdian & Huang, Mingbin, 2021. "Effect of root-zone vertical soil moisture heterogeneity on water transport safety in soil-plant-atmosphere continuum in Robinia pseudoacacia," Agricultural Water Management, Elsevier, vol. 246(C).
- Gong, Xuewen & Qiu, Rangjian & Ge, Jiankun & Bo, Guokui & Ping, Yinglu & Xin, Qingsong & Wang, Shunsheng, 2021. "Evapotranspiration partitioning of greenhouse grown tomato using a modified Priestley–Taylor model," Agricultural Water Management, Elsevier, vol. 247(C).
- Gong, Xuewen & Liu, Hao & Sun, Jingsheng & Gao, Yang & Zhang, Hao, 2019. "Comparison of Shuttleworth-Wallace model and dual crop coefficient method for estimating evapotranspiration of tomato cultivated in a solar greenhouse," Agricultural Water Management, Elsevier, vol. 217(C), pages 141-153.
- Haofang Yan & Song Huang & Jianyun Zhang & Chuan Zhang & Guoqing Wang & Lanlan Li & Shuang Zhao & Mi Li & Baoshan Zhao, 2022. "Comparison of Shuttleworth–Wallace and Dual Crop Coefficient Method for Estimating Evapotranspiration of a Tea Field in Southeast China," Agriculture, MDPI, vol. 12(9), pages 1-17, September.
- Srivastava, R.K. & Panda, R.K. & Chakraborty, A. & Halder, D., 2018. "Comparison of actual evapotranspiration of irrigated maize in a sub-humid region using four different canopy resistance based approaches," Agricultural Water Management, Elsevier, vol. 202(C), pages 156-165.
- Kayatz, Benjamin & Baroni, Gabriele & Hillier, Jon & Lüdtke, Stefan & Freese, Dirk & Wattenbach, Martin, 2024. "Supporting decision-making in agricultural water management under data scarcity using global datasets – chances, limits and potential improvements," Agricultural Water Management, Elsevier, vol. 296(C).
- Rong, Yao & Dai, Xiaoqin & Wang, Weishu & Wu, Peijin & Huo, Zailin, 2023. "Dependence of evapotranspiration validity on shallow groundwater in arid area-a three years field observation experiment," Agricultural Water Management, Elsevier, vol. 286(C).
- Pengrui Ai & Yingjie Ma, 2020. "Estimation of Evapotranspiration of a Jujube/Cotton Intercropping System in an Arid Area Based on the Dual Crop Coefficient Method," Agriculture, MDPI, vol. 10(3), pages 1-14, March.
- Zhao, Peng & Li, Sien & Li, Fusheng & Du, Taisheng & Tong, Ling & Kang, Shaozhong, 2015. "Comparison of dual crop coefficient method and Shuttleworth–Wallace model in evapotranspiration partitioning in a vineyard of northwest China," Agricultural Water Management, Elsevier, vol. 160(C), pages 41-56.
- Yan, Haofang & Yu, Jianjun & Zhang, Chuan & Wang, Guoqing & Huang, Song & Ma, Jiamin, 2021. "Comparison of two canopy resistance models to estimate evapotranspiration for tea and wheat in southeast China," Agricultural Water Management, Elsevier, vol. 245(C).
- Zhang, Rongfei & Xu, Xianli & Guo, Jingsong & Sheng, Zhuping, 2022. "Multi-model ensemble approaches for simulation of evapotranspiration of karst agroforestry ecosystems," Agricultural Water Management, Elsevier, vol. 273(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ortega-Farias, Samuel Orlando & Olioso, A. & Fuentes, S. & Valdes, H., 2006. "Latent heat flux over a furrow-irrigated tomato crop using Penman-Monteith equation with a variable surface canopy resistance," Agricultural Water Management, Elsevier, vol. 82(3), pages 421-432, April.
- Juhász, Ágota & Hrotkó, Károly, 2014. "Comparison of the transpiration part of two sources evapotranspiration model and the measurements of sap flow in the estimation of the transpiration of sweet cherry orchards," Agricultural Water Management, Elsevier, vol. 143(C), pages 142-150.
- Poulovassilis, A. & Anadranistakis, M. & Liakatas, A. & Alexandris, S. & Kerkides, P., 2001. "Semi-empirical approach for estimating actual evapotranspiration in Greece," Agricultural Water Management, Elsevier, vol. 51(2), pages 143-152, October.
- Tahiri, Adel Zeggaf & Anyoji, H. & Yasuda, H., 2006. "Fixed and variable light extinction coefficients for estimating plant transpiration and soil evaporation under irrigated maize," Agricultural Water Management, Elsevier, vol. 84(1-2), pages 186-192, July.
- Xiao, Chunan & Cai, Jiabing & Zhang, Baozhong & Chang, Hongfang & Wei, Zheng, 2023. "Evaluation and verification of two evapotranspiration models based on precision screening and partitioning of field temperature data," Agricultural Water Management, Elsevier, vol. 278(C).
- Chen, Yongfan & Zhang, Zeshan & Wang, Xuejiao & Sun, Shuai & Zhang, Yutong & Wang, Sen & Yang, Mingfeng & Ji, Fen & Ji, Chunrong & Xiang, Dao & Zha, Tianshan & Zhang, Lizhen, 2022. "Sap velocity, transpiration and water use efficiency of drip-irrigated cotton in response to chemical topping and row spacing," Agricultural Water Management, Elsevier, vol. 267(C).
- Gao, Lei & Zhao, Peng & Kang, Shaozhong & Li, Sien & Tong, Ling & Ding, Risheng & Lu, Hongna, 2019. "Surface soil water content dominates the difference between ecosystem and canopy water use efficiency in a sparse vineyard," Agricultural Water Management, Elsevier, vol. 226(C).
- Alexandris, S. & Kerkides, P., 2003. "New empirical formula for hourly estimations of reference evapotranspiration," Agricultural Water Management, Elsevier, vol. 60(3), pages 157-180, May.
- Cossu, Marco & Cossu, Andrea & Deligios, Paola A. & Ledda, Luigi & Li, Zhi & Fatnassi, Hicham & Poncet, Christine & Yano, Akira, 2018. "Assessment and comparison of the solar radiation distribution inside the main commercial photovoltaic greenhouse types in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 822-834.
- Li, Xianyue & Yang, Peiling & Ren, Shumei & Li, Yunkai & Liu, Honglu & Du, Jun & Li, Pingfeng & Wang, Caiyuan & Ren, Liang, 2010. "Modeling cherry orchard evapotranspiration based on an improved dual-source model," Agricultural Water Management, Elsevier, vol. 98(1), pages 12-18, December.
- Bastidas-Obando, E. & Bastiaanssen, W.G.M. & Jarmain, C., 2017. "Estimation of transpiration fluxes from rainfed and irrigated sugarcane in South Africa using a canopy resistance and crop coefficient model," Agricultural Water Management, Elsevier, vol. 181(C), pages 94-107.
- Qiu, Rangjian & Liu, Chunwei & Cui, Ningbo & Wu, Youjie & Wang, Zhenchang & Li, Gen, 2019. "Evapotranspiration estimation using a modified Priestley-Taylor model in a rice-wheat rotation system," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
- Yu, Qihua & Kang, Shaozhong & Zhang, Lu & Hu, Shunjun & Li, Yunfeng & Parsons, David, 2023. "Incorporating new functions into the WAVES model, to better simulate cotton production under film mulching and severe salinity," Agricultural Water Management, Elsevier, vol. 288(C).
- Sara, Ourrai & Bouchra, Aithssaine & Abdelhakim, Amazirh & Salah, Er-RAKI & Lhoussaine, Bouchaou & Frederic, Jacob & Abdelghani, Chehbouni, 2024. "Assessment of the modified two-source energy balance (TSEB) model for estimating evapotranspiration and its components over an irrigated olive orchard in Morocco," Agricultural Water Management, Elsevier, vol. 298(C).
- Autovino, Dario & Minacapilli, Mario & Provenzano, Giuseppe, 2016. "Modelling bulk surface resistance by MODIS data and assessment of MOD16A2 evapotranspiration product in an irrigation district of Southern Italy," Agricultural Water Management, Elsevier, vol. 167(C), pages 86-94.
- Qin, Shujing & Li, Sien & Cheng, Lei & Zhang, Lu & Qiu, Rangjian & Liu, Pan & Xi, Haiyang, 2023. "Partitioning evapotranspiration in partially mulched interplanted croplands by improving the Shuttleworth-Wallace model," Agricultural Water Management, Elsevier, vol. 276(C).
- Yin, Xuanpeng & Chen, Junji & Ye, Yunyu & Zhu, Hongfeng & Li, Junyu & Zhang, Lizhen & Zhang, Hao & He, Shuilian & Wu, Hongzhi, 2024. "Optimizing bent branch numbers improves transpiration and crop water productivity of cut rose (Rosa hybrida) in greenhouse," Agricultural Water Management, Elsevier, vol. 296(C).
- Ochege, Friday Uchenna & Luo, Geping & Yuan, Xiuliang & Owusu, George & Li, Chaofan & Justine, Francis Meta, 2022. "Simulated effects of plastic film-mulched soil on surface energy fluxes based on optimized TSEB model in a drip-irrigated cotton field," Agricultural Water Management, Elsevier, vol. 262(C).
- Graamans, Luuk & van den Dobbelsteen, Andy & Meinen, Esther & Stanghellini, Cecilia, 2017. "Plant factories; crop transpiration and energy balance," Agricultural Systems, Elsevier, vol. 153(C), pages 138-147.
- Kato, Tomomichi & Kimura, Reiji & Kamichika, Makio, 2004. "Estimation of evapotranspiration, transpiration ratio and water-use efficiency from a sparse canopy using a compartment model," Agricultural Water Management, Elsevier, vol. 65(3), pages 173-191, March.
More about this item
Keywords
Evapotranspiration; Penman–Monteith equation; Canopy resistance; Paper FAO-56; Crop coefficient; Eddy covariance;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:130:y:2013:i:c:p:119-130. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.