IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v116y2013icp193-203.html
   My bibliography  Save this article

Biosolid and distillery effluent amendments to Irish short rotation coppiced willow plantations: Impacts on groundwater quality and soil

Author

Listed:
  • Galbally, Paul
  • Ryan, Declan
  • Fagan, Colette C.
  • Finnan, John
  • Grant, Jim
  • McDonnell, Kevin

Abstract

The impact of landspreading organic byproduct (OB) on the quality of groundwater (GW) and soil underlying short rotation coppiced willow plantations was assessed. Organic byproduct, namely biosolid (BS) and distillery effluent (DE), was spread on six plots (each with a plot area of 0.059ha) at OB treatment-rates of 100%, 50% and 0%. The OB treatment rate was defined by the maximum permissible soil-P load defined in Irish regulation. Groundwater was sampled each month and tested for pH, electrical conductivity (EC), NO3, PO43, total soluble phosphorous (TSP), K and six heavy metals (HMs) Cu, Cd, Cr, Pb, Ni, and Zn. Results were assessed in relation to Irish GW threshold values (GTVs), to assess overall quality using a “well bottom” approach. The background concentration of GW K and GW P (established in early 2008, prior to all OB spreading) were above permissible Irish statutory limits, in all cases. There was evidence of percolation of K and TSP to GW; K and PO43 concentrations breached GTVs across all plots. There was also evidence of percolation of Cu through soil profile, though Cu GW concentration did not breach GTV, and no risk to GW quality is necessarily implied. A potential (though small) risk of P- and K-percolation could impact GW quality in commercially scaled-up plantations; however, risk to GW quality from NO3, Cu, Cd, Cr, Pb, Ni, and Zn leaching in soil are minimal. Sites considered for energy crop should be assessed for soil conditions, and vulnerability to leaching, before OB amendment programs are initiated. The study was conducted over two years; the longer term impact of applications of BS and DE on soil organic-matter content, salinity and pH (and subsequent loss through soil profile) should be assessed. The implication of scaling up test-bed sized applications to larger commercial plantation scales needs to be considered.

Suggested Citation

  • Galbally, Paul & Ryan, Declan & Fagan, Colette C. & Finnan, John & Grant, Jim & McDonnell, Kevin, 2013. "Biosolid and distillery effluent amendments to Irish short rotation coppiced willow plantations: Impacts on groundwater quality and soil," Agricultural Water Management, Elsevier, vol. 116(C), pages 193-203.
  • Handle: RePEc:eee:agiwat:v:116:y:2013:i:c:p:193-203
    DOI: 10.1016/j.agwat.2012.07.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837741200203X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2012.07.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Muyen, Zahida & Moore, Graham A. & Wrigley, Roger J., 2011. "Soil salinity and sodicity effects of wastewater irrigation in South East Australia," Agricultural Water Management, Elsevier, vol. 99(1), pages 33-41.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Galbally, Paul & Ryan, Declan & Fagan, Colette C. & Finnan, John & Grant, Jim & McDonnell, Kevin, 2014. "Biosolids and distillery effluent amendments to Irish short rotation coppiced willow plantations: Impacts on overland flow and surface water quality," Agricultural Water Management, Elsevier, vol. 146(C), pages 173-184.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mabasa, Nyiko C. & Jones, Clifford L.W. & Laing, Mark, 2021. "The use of treated brewery effluent for salt tolerant crop irrigation," Agricultural Water Management, Elsevier, vol. 245(C).
    2. Maestre-Valero, J.F. & Gonzalez-Ortega, M.J. & Martinez-Alvarez, V. & Gallego-Elvira, B. & Conesa-Jodar, F.J. & Martin-Gorriz, B., 2019. "Revaluing the nutrition potential of reclaimed water for irrigation in southeastern Spain," Agricultural Water Management, Elsevier, vol. 218(C), pages 174-181.
    3. Zolfaghary, Parvin & Zakerinia, Mahdi & Kazemi, Hossein, 2021. "A model for the use of urban treated wastewater in agriculture using multiple criteria decision making (MCDM) and geographic information system (GIS)," Agricultural Water Management, Elsevier, vol. 243(C).
    4. Imbernón-Mulero, Alberto & Gallego-Elvira, Belén & Martínez-Alvarez, Victoriano & Acosta, José A. & Antolinos, Vera & Robles, Juan M. & Navarro, Josefa M. & Maestre-Valero, José F., 2024. "Irrigation of young grapefruits with desalinated seawater: Agronomic and economic outcomes," Agricultural Water Management, Elsevier, vol. 299(C).
    5. Oliver Maaß & Philipp Grundmann, 2018. "Governing Transactions and Interdependences between Linked Value Chains in a Circular Economy: The Case of Wastewater Reuse in Braunschweig (Germany)," Sustainability, MDPI, vol. 10(4), pages 1-29, April.
    6. Jiayu Lu & Hui Wang & Chuanwang Hu, 2022. "Changes in Physicochemical Properties of Typical Subtropical Soils under Different Treated Domestic Wastewater Irrigation Modes," Sustainability, MDPI, vol. 14(16), pages 1-16, August.
    7. Gorfie, Belihu Nigatu & Tuhar, Abraham Woldemichael & Keraga, Amare shiberu & Woldeyohannes, Aemiro Bezabih, 2022. "Effect of brewery wastewater irrigation on soil characteristics and lettuce (Lactuca sativa) crop in Ethiopia," Agricultural Water Management, Elsevier, vol. 269(C).
    8. Abdessamed Derdour & Hazem Ghassan Abdo & Hussein Almohamad & Abdullah Alodah & Ahmed Abdullah Al Dughairi & Sherif S. M. Ghoneim & Enas Ali, 2023. "Prediction of Groundwater Quality Index Using Classification Techniques in Arid Environments," Sustainability, MDPI, vol. 15(12), pages 1-20, June.
    9. Nicoleta Ungureanu & Valentin Vlăduț & Gheorghe Voicu, 2020. "Water Scarcity and Wastewater Reuse in Crop Irrigation," Sustainability, MDPI, vol. 12(21), pages 1-18, October.
    10. Taylor, Richard P. & Jones, Clifford L.W. & Laing, Mark, 2019. "The influence of pH on the sodium removal rates of three crops grown in a brewery effluent treatment system," Agricultural Water Management, Elsevier, vol. 226(C).
    11. Li, Jianshe & Gao, Yanming & Zhang, Xueyan & Tian, Ping & Li, Juan & Tian, Yongqiang, 2019. "Comprehensive comparison of different saline water irrigation strategies for tomato production: Soil properties, plant growth, fruit yield and fruit quality," Agricultural Water Management, Elsevier, vol. 213(C), pages 521-533.
    12. Isaac Zipori & Ran Erel & Uri Yermiyahu & Alon Ben-Gal & Arnon Dag, 2020. "Sustainable Management of Olive Orchard Nutrition: A Review," Agriculture, MDPI, vol. 10(1), pages 1-21, January.
    13. Zhu, Yan & Yang, Jinzhong & Ye, Ming & Sun, Huaiwei & Shi, Liangsheng, 2017. "Development and application of a fully integrated model for unsaturated-saturated nitrogen reactive transport," Agricultural Water Management, Elsevier, vol. 180(PA), pages 35-49.
    14. Alrajhi, A. & Beecham, S. & Bolan, Nanthi S. & Hassanli, A., 2015. "Evaluation of soil chemical properties irrigated with recycled wastewater under partial root-zone drying irrigation for sustainable tomato production," Agricultural Water Management, Elsevier, vol. 161(C), pages 127-135.
    15. Gao, Yang & Shao, Guangcheng & Wu, Shiqing & Xiaojun, Wang & Lu, Jia & Cui, Jintao, 2021. "Changes in soil salinity under treated wastewater irrigation: A meta-analysis," Agricultural Water Management, Elsevier, vol. 255(C).
    16. Grattan, S.R. & Díaz, F.J. & Pedrero, F. & Vivaldi, G.A., 2015. "Assessing the suitability of saline wastewaters for irrigation of Citrus spp.: Emphasis on boron and specific-ion interactions," Agricultural Water Management, Elsevier, vol. 157(C), pages 48-58.
    17. Erel, Ran & Eppel, Amir & Yermiyahu, Uri & Ben-Gal, Alon & Levy, Guy & Zipori, Isaac & Schaumann, Gabriele E. & Mayer, Oliver & Dag, Arnon, 2019. "Long-term irrigation with reclaimed wastewater: Implications on nutrient management, soil chemistry and olive (Olea europaea L.) performance," Agricultural Water Management, Elsevier, vol. 213(C), pages 324-335.
    18. Maaß, Oliver & Grundmann, Philipp, 2016. "Added-value from linking the value chains of wastewater treatment, crop production and bioenergy production: A case study on reusing wastewater and sludge in crop production in Braunschweig (Germany)," Resources, Conservation & Recycling, Elsevier, vol. 107(C), pages 195-211.
    19. Elgallal, M. & Fletcher, L. & Evans, B., 2016. "Assessment of potential risks associated with chemicals in wastewater used for irrigation in arid and semiarid zones: A review," Agricultural Water Management, Elsevier, vol. 177(C), pages 419-431.
    20. Chojnacka, K. & Witek-Krowiak, A. & Moustakas, K. & Skrzypczak, D. & Mikula, K. & Loizidou, M., 2020. "A transition from conventional irrigation to fertigation with reclaimed wastewater: Prospects and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:116:y:2013:i:c:p:193-203. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.