IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v116y2013icp151-159.html
   My bibliography  Save this article

Treated sewage effluent: Agronomical and economical aspects on bermudagrass production

Author

Listed:
  • Nogueira, S.F.
  • Pereira, B.F.F.
  • Gomes, T.M.
  • de Paula, A.M.
  • dos Santos, J.A.
  • Montes, C.R.

Abstract

This study investigated the effects of irrigation using treated sewage effluent (TSE) combined with nitrogen (N) fertilization on the productivity and quality of bermudagrass, and on its economic feasibility under tropical conditions. The treatments employed were SI – no irrigation and no fertilization; A100 (control) – irrigation with potable water plus 520kgNha−1year−1 provided as NH4NO3; E0, E33, E66, and E100: irrigation with treated sewage effluent plus 0, 172, 343 and 520kgNha−1year−1 as NH4NO3, respectively. Chemical properties of TSE, shoot dry matter production, N concentration in bermudagrass were determined, and benefit–cost and economic viability analyses were carried out. Tree years of irrigation with TSE had agronomical benefits to bermudagrass such as: (i) saving 33% in N fertilizer by adding of 275kgNha−1year−1, increasing N accumulation in the soil; (ii) providing 70% of the N as NH4+, which is the form most quickly assimilated by the plants; (iii) building up dry matter production with 7Mgha−1year−1 and (iv) increasing leaf N concentration in leaf tissue. The main benefit of TSE irrigation occurs in drought seasons with the increase in N concentration in bermudagrass shoots. Higher N concentration in leaf tissue elevates the quality and the sales price for the grass harvested, thus optimizing the benefit–cost ratio for the producer. Therefore, TSE irrigation is a viable cost-effective alternative if the N concentration in the leaf tissue is considered in the sales price.

Suggested Citation

  • Nogueira, S.F. & Pereira, B.F.F. & Gomes, T.M. & de Paula, A.M. & dos Santos, J.A. & Montes, C.R., 2013. "Treated sewage effluent: Agronomical and economical aspects on bermudagrass production," Agricultural Water Management, Elsevier, vol. 116(C), pages 151-159.
  • Handle: RePEc:eee:agiwat:v:116:y:2013:i:c:p:151-159
    DOI: 10.1016/j.agwat.2012.07.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377412001898
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2012.07.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gloaguen, Thomas V. & Forti, M.-Cristina & Lucas, Yves & Montes, Celia R. & Goncalves, Roberta A.B. & Herpin, Uwe & Melfi, Adolpho J., 2007. "Soil solution chemistry of a Brazilian Oxisol irrigated with treated sewage effluent," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 119-131, March.
    2. da Fonseca, Adriel Ferreira & Melfi, Adolpho Jose & Monteiro, Francisco Antonio & Montes, Celia Regina & Almeida, Vagner Vidal de & Herpin, Uwe, 2007. "Treated sewage effluent as a source of water and nitrogen for Tifton 85 bermudagrass," Agricultural Water Management, Elsevier, vol. 87(3), pages 328-336, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guangshuai Wang & Zhenjie Du & Huifeng Ning & Hao Liu & Sunusi Amin Abubakar & Yang Gao, 2021. "Changes in GHG Emissions Based on Irrigation Water Quality in Short-Term Incubated Agricultural Soil of the North China Plain," Agriculture, MDPI, vol. 11(12), pages 1-12, December.
    2. Urbano, Vanessa Ribeiro & Mendonça, Thaís Grandizoli & Bastos, Reinaldo Gaspar & Souza, Claudinei Fonseca, 2017. "Effects of treated wastewater irrigation on soil properties and lettuce yield," Agricultural Water Management, Elsevier, vol. 181(C), pages 108-115.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blum, Julius & Melfi, Adolpho José & Montes, Célia Regina & Gomes, Tamara Maria, 2013. "Nitrogen and phosphorus leaching in a tropical Brazilian soil cropped with sugarcane and irrigated with treated sewage effluent," Agricultural Water Management, Elsevier, vol. 117(C), pages 115-122.
    2. Leal, Rafael Marques Pereira & Firme, Lilian Pittol & Herpin, Uwe & da Fonseca, Adriel Ferreira & Montes, Célia Regina & dos Santos Dias, Carlos Tadeu & Melfi, Adolpho José, 2010. "Carbon and nitrogen cycling in a tropical Brazilian soil cropped with sugarcane and irrigated with wastewater," Agricultural Water Management, Elsevier, vol. 97(2), pages 271-276, February.
    3. Leal, Rafael Marques Pereira & Herpin, Uwe & Fonseca, Adriel Ferreira da & Firme, Lilian Pittol & Montes, Célia Regina & Melfi, Adolpho José, 2009. "Sodicity and salinity in a Brazilian Oxisol cultivated with sugarcane irrigated with wastewater," Agricultural Water Management, Elsevier, vol. 96(2), pages 307-316, February.
    4. Mabasa, Nyiko C. & Jones, Clifford L.W. & Laing, Mark, 2021. "The use of treated brewery effluent for salt tolerant crop irrigation," Agricultural Water Management, Elsevier, vol. 245(C).
    5. Feder, Frédéric, 2021. "Irrigation with treated wastewater in humid regions: Effects on Nitisols, sugarcane yield and quality," Agricultural Water Management, Elsevier, vol. 247(C).
    6. Pereira, B.F.F. & He, Z.L. & Stoffella, P.J. & Melfi, A.J., 2011. "Reclaimed wastewater: Effects on citrus nutrition," Agricultural Water Management, Elsevier, vol. 98(12), pages 1828-1833, October.
    7. Akponikpè, P.B. Irénikatché & Wima, Koffi & Yacouba, Hamma & Mermoud, André, 2011. "Reuse of domestic wastewater treated in macrophyte ponds to irrigate tomato and eggplant in semi-arid West-Africa: Benefits and risks," Agricultural Water Management, Elsevier, vol. 98(5), pages 834-840, March.
    8. Libutti, Angela & Gatta, Giuseppe & Gagliardi, Anna & Vergine, Pompilio & Pollice, Alfieri & Beneduce, Luciano & Disciglio, Grazia & Tarantino, Emanuele, 2018. "Agro-industrial wastewater reuse for irrigation of a vegetable crop succession under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 196(C), pages 1-14.
    9. Erel, Ran & Eppel, Amir & Yermiyahu, Uri & Ben-Gal, Alon & Levy, Guy & Zipori, Isaac & Schaumann, Gabriele E. & Mayer, Oliver & Dag, Arnon, 2019. "Long-term irrigation with reclaimed wastewater: Implications on nutrient management, soil chemistry and olive (Olea europaea L.) performance," Agricultural Water Management, Elsevier, vol. 213(C), pages 324-335.
    10. Zalacáin, David & Martínez-Pérez, Silvia & Bienes, Ramón & García-Díaz, Andrés & Sastre-Merlín, Antonio, 2019. "Salt accumulation in soils and plants under reclaimed water irrigation in urban parks of Madrid (Spain)," Agricultural Water Management, Elsevier, vol. 213(C), pages 468-476.
    11. Herpin, Uwe & Gloaguen, Thomas Vincent & da Fonseca, Adriel Ferreira & Montes, Celia Regina & Mendonca, Fernando Campos & Piveli, Roque Passos & Breulmann, Gerhard & Forti, Maria Cristina & Melfi, Ado, 2007. "Chemical effects on the soil-plant system in a secondary treated wastewater irrigated coffee plantation--A pilot field study in Brazil," Agricultural Water Management, Elsevier, vol. 89(1-2), pages 105-115, April.
    12. Khelil, Mohamed Naceur & Destain, Jean Pierre & Rejeb, Saloua & Henchi, Belgacem, 2011. "Effects of irrigation water quality on the recovery of 15N-fertilizer by Sorghum in field study," Asian Journal of Agriculture and Rural Development, Asian Economic and Social Society (AESS), vol. 1(04), pages 1-9, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:116:y:2013:i:c:p:151-159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.