IDEAS home Printed from https://ideas.repec.org/a/zib/zbnees/v4y2020i1p5-9.html
   My bibliography  Save this article

Effect Of Climatic Variables On Agricultural Productivity And Distribution In Plateau State Nigeria

Author

Listed:
  • Ibrahim Sufiyan

    (Department of Geography, Nasarawa State University Keffi, Nasarawa State Nigeria)

  • J.I. Magaji

    (Department of Geography, Nasarawa State University Keffi, Nasarawa State Nigeria)

  • A.T.Ogah

    (Department of Geography, Nasarawa State University Keffi, Nasarawa State Nigeria)

  • K.D. Mohammed

    (Department of Geography, Nasarawa State University Keffi, Nasarawa State Nigeria)

  • K.K Geidam

    (Mai Idris Alooma Polytechnic, Geidam Yobe State, Nigeria)

Abstract

Food production becomes necessary in other to feed the growing population. There is pressure on land for cultivation and climate change has affected the crop yields, production and distributions in Plateau state Nigeria. The two important parameters of climate that are temperature and rainfall have significantly shows positive correlations. Three crops; Millet, Groundnut and Guinea corn (Sorghum), have been studied by comparing their yield using temperature and rainfall the assessment. The rainfall has the highest correlation with 0.987while, the impact of temperature base on the Pearson rank correlation has 0.853. the application of the coefficient determination will provide individual crop yield base on its relationship with independent variable.

Suggested Citation

  • Ibrahim Sufiyan & J.I. Magaji & A.T.Ogah & K.D. Mohammed & K.K Geidam, 2020. "Effect Of Climatic Variables On Agricultural Productivity And Distribution In Plateau State Nigeria," Environment & Ecosystem Science (EES), Zibeline International Publishing, vol. 4(1), pages 5-9, February.
  • Handle: RePEc:zib:zbnees:v:4:y:2020:i:1:p:5-9
    DOI: 10.26480/ees.01.2020.05.09
    as

    Download full text from publisher

    File URL: https://environecosystem.com/download/14465/
    Download Restriction: no

    File URL: https://libkey.io/10.26480/ees.01.2020.05.09?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Deepak K. Ray & James S. Gerber & Graham K. MacDonald & Paul C. West, 2015. "Climate variation explains a third of global crop yield variability," Nature Communications, Nature, vol. 6(1), pages 1-9, May.
    2. Achyuta Adhvaryu & Prashant Bharadwaj & James Fenske & Anant Nyshadham & Richard Stanley, 2024. "Dust and Death: Evidence from the West African Harmattan," The Economic Journal, Royal Economic Society, vol. 134(659), pages 885-912.
    3. Wang, Jinxia & Mendelsohn, Robert & Dinar, Ariel & Huang, Jikun & Rozelle, Scott & Zhang, Lijuan, 2008. "Can China continue feeding itself ? the impact of climate change on agriculture," Policy Research Working Paper Series 4470, The World Bank.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Burhan Can Karahasan & Mehmet Pinar, 2023. "Climate change and spatial agricultural development in Turkey," Review of Development Economics, Wiley Blackwell, vol. 27(3), pages 1699-1720, August.
    2. Blazquez-Soriano, Amparo & Ramos-Sandoval, Rosmery, 2022. "Information transfer as a tool to improve the resilience of farmers against the effects of climate change: The case of the Peruvian National Agrarian Innovation System," Agricultural Systems, Elsevier, vol. 200(C).
    3. Abdoul G. Sam & Babatunde O. Abidoye & Sihle Mashaba, 2021. "Climate change and household welfare in sub-Saharan Africa: empirical evidence from Swaziland," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 13(2), pages 439-455, April.
    4. Cao, Juan & Zhang, Zhao & Tao, Fulu & Chen, Yi & Luo, Xiangzhong & Xie, Jun, 2023. "Forecasting global crop yields based on El Nino Southern Oscillation early signals," Agricultural Systems, Elsevier, vol. 205(C).
    5. Jeetendra Prakash Aryal & Tek B. Sapkota & Ritika Khurana & Arun Khatri-Chhetri & Dil Bahadur Rahut & M. L. Jat, 2020. "Climate change and agriculture in South Asia: adaptation options in smallholder production systems," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5045-5075, August.
    6. Rosa Carbonell-Bojollo & Oscar Veroz-Gonzalez & Rafaela Ordoñez-Fernandez & Manuel Moreno-Garcia & Gottlieb Basch & Amir Kassam & Miguel A. Repullo-Ruiberriz de Torres & Emilio J. Gonzalez-Sanchez, 2019. "The Effect of Conservation Agriculture and Environmental Factors on CO 2 Emissions in a Rainfed Crop Rotation," Sustainability, MDPI, vol. 11(14), pages 1-19, July.
    7. Colmer, Jonathan & Lin, Dajun & Liu, Siying & Shimshack, Jay, 2021. "Why are pollution damages lower in developed countries? Insights from high-Income, high-particulate matter Hong Kong," Journal of Health Economics, Elsevier, vol. 79(C).
    8. Seo, Niggol & Mendelsohn, Robert & Dinar, Ariel & Kurukulasuriya, Pradeep & Hassan, Rashid, 2008. "Long-term adaptation : selecting farm types across agro-ecological zones in Africa," Policy Research Working Paper Series 4602, The World Bank.
    9. Zhao, Xin & Calvin, Katherine & Patel, Pralit & Abigail, Snyder & Wise, Marshall & Waldhoff, Stephanie & Hejazi, Mohamad & Edmonds, James, 2021. "Impacts of interannual climate and biophysical variability on global agriculture markets," Conference papers 333245, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    10. Qiang Wang & Yuanfan Li & Rongrong Li, 2024. "Rethinking the environmental Kuznets curve hypothesis across 214 countries: the impacts of 12 economic, institutional, technological, resource, and social factors," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-19, December.
    11. Kondwani Msowoya & Kaveh Madani & Rahman Davtalab & Ali Mirchi & Jay R. Lund, 2016. "Climate Change Impacts on Maize Production in the Warm Heart of Africa," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5299-5312, November.
    12. Linnenluecke, Martina K. & Smith, Tom & McKnight, Brent, 2016. "Environmental finance: A research agenda for interdisciplinary finance research," Economic Modelling, Elsevier, vol. 59(C), pages 124-130.
    13. Janusz Prusiński & Radosław Nowicki, 2020. "Effect of planting density and row spacing on the yielding of soybean (Glycine max L. Merrill)," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 66(12), pages 616-623.
    14. Shahzad, Muhammad Faisal & Abdulai, Awudu, 2020. "Adaptation to extreme weather conditions and farm performance in rural Pakistan," Agricultural Systems, Elsevier, vol. 180(C).
    15. Zeynep K. Hansen & Gary D. Libecap & Scott E. Lowe, 2011. "Climate Variability and Water Infrastructure: Historical Experience in the Western United States," NBER Chapters, in: The Economics of Climate Change: Adaptations Past and Present, pages 253-280, National Bureau of Economic Research, Inc.
    16. Archibong, Belinda & Annan, Francis & Ekhator-Mobayode, Uche, 2023. "The epidemic effect: Epidemics, institutions and human capital development," Journal of Economic Behavior & Organization, Elsevier, vol. 211(C), pages 549-566.
    17. Kamini Yadav & Hatim M. E. Geli, 2021. "Prediction of Crop Yield for New Mexico Based on Climate and Remote Sensing Data for the 1920–2019 Period," Land, MDPI, vol. 10(12), pages 1-27, December.
    18. Zhai, Fan & Lin, Tun & Byambadorj, Enerelt, 2009. "A General Equilibrium Analysis of the Impact of Climate Change on Agriculture in the People’s Republic of China," Asian Development Review, Asian Development Bank, vol. 26(1), pages 206-225.
    19. Kukal, M.S. & Irmak, S., 2020. "Impact of irrigation on interannual variability in United States agricultural productivity," Agricultural Water Management, Elsevier, vol. 234(C).
    20. Franklin Simtowe & Paswel Marenya & Emily Amondo & Mosisa Worku & Dil Bahadur Rahut & Olaf Erenstein, 2019. "Heterogeneous seed access and information exposure: implications for the adoption of drought-tolerant maize varieties in Uganda," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 7(1), pages 1-23, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zib:zbnees:v:4:y:2020:i:1:p:5-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Zibeline International Publishing (email available below). General contact details of provider: https://environecosystem.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.