IDEAS home Printed from https://ideas.repec.org/a/caa/jnlpse/v66y2020i12id403-2020-pse.html
   My bibliography  Save this article

Effect of planting density and row spacing on the yielding of soybean (Glycine max L. Merrill)

Author

Listed:
  • Janusz Prusiński
  • Radosław Nowicki

    (Department of Agronomy, Faculty of Agriculture and Biotechnology, University of Science and Technology, Bydgoszcz, Poland)

Abstract

The paper presents the effect of planting density and row spacing on the growth, development and yield of soybean, cv. Merlin, under very diversified thermal and humidity conditions in the north-central part of Poland. The field experiment was performed in 2016-2019. Three planting densities were applied (70, 90 and 110 seeds per 1 m2) with two row spacing (16 and 32 cm), in 4 replications. Under good humidity and thermal conditions in 2016 and 2017, the yield of seeds and protein in soybean was 3.3 times higher than if exposed to extreme drought and accompanying high air temperatures in 2018 and 2019. The highly diversified thermal and humidity conditions also contributed to a significant decrease in the effect of the factors applied on the structural yield components, leaf area index and dry matter of nodules. As a result, no need of increasing soybean density was observed; along with row spacing, it should be chosen according to the region.

Suggested Citation

  • Janusz Prusiński & Radosław Nowicki, 2020. "Effect of planting density and row spacing on the yielding of soybean (Glycine max L. Merrill)," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 66(12), pages 616-623.
  • Handle: RePEc:caa:jnlpse:v:66:y:2020:i:12:id:403-2020-pse
    DOI: 10.17221/403/2020-PSE
    as

    Download full text from publisher

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/403/2020-PSE.html
    Download Restriction: free of charge

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/403/2020-PSE.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/403/2020-PSE?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Deepak K. Ray & James S. Gerber & Graham K. MacDonald & Paul C. West, 2015. "Climate variation explains a third of global crop yield variability," Nature Communications, Nature, vol. 6(1), pages 1-9, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yaqin He & Brian J. Revell & Bofeng Leng & Zhongchao Feng, 2017. "The Effects of Weather on Oilseed Rape (OSR) Yield in China: Future Implications of Climate Change," Sustainability, MDPI, vol. 9(3), pages 1-14, March.
    2. Cao, Juan & Zhang, Zhao & Tao, Fulu & Chen, Yi & Luo, Xiangzhong & Xie, Jun, 2023. "Forecasting global crop yields based on El Nino Southern Oscillation early signals," Agricultural Systems, Elsevier, vol. 205(C).
    3. Jeetendra Prakash Aryal & Tek B. Sapkota & Ritika Khurana & Arun Khatri-Chhetri & Dil Bahadur Rahut & M. L. Jat, 2020. "Climate change and agriculture in South Asia: adaptation options in smallholder production systems," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5045-5075, August.
    4. Rosa Carbonell-Bojollo & Oscar Veroz-Gonzalez & Rafaela Ordoñez-Fernandez & Manuel Moreno-Garcia & Gottlieb Basch & Amir Kassam & Miguel A. Repullo-Ruiberriz de Torres & Emilio J. Gonzalez-Sanchez, 2019. "The Effect of Conservation Agriculture and Environmental Factors on CO 2 Emissions in a Rainfed Crop Rotation," Sustainability, MDPI, vol. 11(14), pages 1-19, July.
    5. Li, Siyi & Wang, Bin & Feng, Puyu & Liu, De Li & Li, Linchao & Shi, Lijie & Yu, Qiang, 2022. "Assessing climate vulnerability of historical wheat yield in south-eastern Australia's wheat belt," Agricultural Systems, Elsevier, vol. 196(C).
    6. Archana Raghavan Sathyan & Christoph Funk & Thomas Aenis & Lutz Breuer, 2018. "Climate Vulnerability in Rainfed Farming: Analysis from Indian Watersheds," Sustainability, MDPI, vol. 10(9), pages 1-27, September.
    7. Zhao, Xin & Calvin, Katherine & Patel, Pralit & Abigail, Snyder & Wise, Marshall & Waldhoff, Stephanie & Hejazi, Mohamad & Edmonds, James, 2021. "Impacts of interannual climate and biophysical variability on global agriculture markets," Conference papers 333245, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    8. Qiang Wang & Yuanfan Li & Rongrong Li, 2024. "Rethinking the environmental Kuznets curve hypothesis across 214 countries: the impacts of 12 economic, institutional, technological, resource, and social factors," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-19, December.
    9. Sohail Abbas & Ghulam Dastgeer, 2021. "Analysing the impacts of climate variability on the yield of Kharif rice over Punjab, Pakistan," Natural Resources Forum, Blackwell Publishing, vol. 45(4), pages 329-349, November.
    10. Linnenluecke, Martina K. & Smith, Tom & McKnight, Brent, 2016. "Environmental finance: A research agenda for interdisciplinary finance research," Economic Modelling, Elsevier, vol. 59(C), pages 124-130.
    11. Viorica GAVRILĂ, 2017. "The Stability of Fruit Production Under the Impact of Climate Factors – Scientific Literature-Based Approaches," Agricultural Economics and Rural Development, Institute of Agricultural Economics, vol. 14(2), pages 267-274.
    12. Erin Coughlan de Perez & Maarten van Aalst & Richard Choularton & Bart van den Hurk & Simon Mason & Hannah Nissan & Saroja Schwager, 2019. "From rain to famine: assessing the utility of rainfall observations and seasonal forecasts to anticipate food insecurity in East Africa," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 11(1), pages 57-68, February.
    13. Jing Hou & Bo Hou, 2019. "Farmers’ Adoption of Low-Carbon Agriculture in China: An Extended Theory of the Planned Behavior Model," Sustainability, MDPI, vol. 11(5), pages 1-20, March.
    14. Shahzad, Muhammad Faisal & Abdulai, Awudu, 2020. "Adaptation to extreme weather conditions and farm performance in rural Pakistan," Agricultural Systems, Elsevier, vol. 180(C).
    15. Zheng Li & Roderick M. Rejesus & Xiaoyong Zheng, 2021. "Nonparametric Estimation and Inference of Production Risk," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(5), pages 1857-1877, October.
    16. Gaona, Jaime & Benito-Verdugo, Pilar & Martínez-Fernández, José & González-Zamora, Ángel & Almendra-Martín, Laura & Herrero-Jiménez, Carlos Miguel, 2023. "Predictive value of soil moisture and concurrent variables in the multivariate modelling of cereal yields in water-limited environments," Agricultural Water Management, Elsevier, vol. 282(C).
    17. Kamini Yadav & Hatim M. E. Geli, 2021. "Prediction of Crop Yield for New Mexico Based on Climate and Remote Sensing Data for the 1920–2019 Period," Land, MDPI, vol. 10(12), pages 1-27, December.
    18. Vis Taraz, 2023. "Public works programmes and agricultural risk: Evidence from India," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 67(2), pages 198-223, April.
    19. Kukal, M.S. & Irmak, S., 2020. "Impact of irrigation on interannual variability in United States agricultural productivity," Agricultural Water Management, Elsevier, vol. 234(C).
    20. Nelson Christopher Dzupire & Philip Ngare & Leo Odongo, 2019. "Pricing Basket Weather Derivatives on Rainfall and Temperature Processes," IJFS, MDPI, vol. 7(3), pages 1-14, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlpse:v:66:y:2020:i:12:id:403-2020-pse. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.