IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/75298.html
   My bibliography  Save this paper

A note on CES Preferences in Age-Structured Models

Author

Listed:
  • Da-Rocha, Jose-Maria
  • García-Cutrin, Javier
  • Gutierrez, Maria Jose
  • Touze, Julia

Abstract

In a biomass model a CES function generates an exploitation rate that is directly proportional to the scarcity of the resource: resources with less biomass are subjected to lower exploitation rates. In this paper we investigate the implications of introducing invariant intertemporal preferences as to yield stability in age-structured fishery problem. Our results show that a CES function in an age-structured bioeconomic model produces links between the scarcity of the resource (measured as the weighted sum of the size of the cohorts, which is similar to the Shannon index) and the exploitation of the resource over a complete cycle, the duration of which is equivalent to the number of age groups of the resource. Given that multiple paths can be constructed that regenerate the population of the resources (the age pyramid) over the course of the cycle, optimum harvest allocation means selecting the one that permits the biggest catch at the beginning of the cycle. Smoother exploitation path towards the stationary values are achieved by catching more in periods when there is less biomass in exchange for catching less when the biomass recovers, which results in exploitation rates that are not directly proportional to the scarcity of the resource. Moreover, we show that introducing non-constant discount rates into age-structured models enables exploitation rates proportional to the scarcity of the resource to be recouped

Suggested Citation

  • Da-Rocha, Jose-Maria & García-Cutrin, Javier & Gutierrez, Maria Jose & Touze, Julia, 2016. "A note on CES Preferences in Age-Structured Models," MPRA Paper 75298, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:75298
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/75298/1/MPRA_paper_75298.pdf
    File Function: original version
    Download Restriction: no

    File URL: https://mpra.ub.uni-muenchen.de/75344/1/MPRA_paper_75298.pdf
    File Function: revised version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ravn-Jonsen, Lars J., 2011. "Intertemporal choice of marine ecosystem exploitation," Ecological Economics, Elsevier, vol. 70(10), pages 1726-1734, August.
    2. Olli Tahvonen, 2015. "Economics of Naturally Regenerating, Heterogeneous Forests," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(2), pages 309-337.
    3. Holland, Daniel S. & Herrera, Guillermo E., 2012. "The impact of age structure, uncertainty, and asymmetric spatial dynamics on regulatory performance in a fishery metapopulation," Ecological Economics, Elsevier, vol. 77(C), pages 207-218.
    4. Martin F. Quaas & Till Requate, 2013. "Sushi or Fish Fingers? Seafood Diversity, Collapsing Fish Stocks, and Multispecies Fishery Management," Scandinavian Journal of Economics, Wiley Blackwell, vol. 115(2), pages 381-422, April.
    5. Tahvonen, Olli, 2009. "Economics of harvesting age-structured fish populations," Journal of Environmental Economics and Management, Elsevier, vol. 58(3), pages 281-299, November.
    6. Deepak K. Ray & James S. Gerber & Graham K. MacDonald & Paul C. West, 2015. "Climate variation explains a third of global crop yield variability," Nature Communications, Nature, vol. 6(1), pages 1-9, May.
    7. Da Rocha, José María & García-Cutrín, Javier & Gutiérrez Huerta, María José & Touza, Julia, 2015. "Reconciling yield stability with international fisheries agencies precautionary preferences: the role of non constant discount factors in age structured models," DFAEII Working Papers 1988-088X, University of the Basque Country - Department of Foundations of Economic Analysis II.
    8. McGough Bruce & Plantinga Andrew J. & Costello Christopher, 2009. "Optimally Managing a Stochastic Renewable Resource under General Economic Conditions," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 9(1), pages 1-31, December.
    9. Woods, Pamela J. & Bouchard, Caroline & Holland, Daniel S. & Punt, André E. & Marteinsdóttir, Guðrun, 2015. "Catch-quota balancing mechanisms in the Icelandic multi-species demersal fishery: Are all species equal?," Marine Policy, Elsevier, vol. 55(C), pages 1-10.
    10. José-María Da Rocha & María-Jose Gutiérrez & Luis Antelo, 2013. "Selectivity, Pulse Fishing and Endogenous Lifespan in Beverton-Holt Models," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 54(1), pages 139-154, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Da Rocha, José María & García-Cutrín, Javier & Gutiérrez Huerta, María José & Touza, Julia, 2015. "Reconciling yield stability with international fisheries agencies precautionary preferences: the role of non constant discount factors in age structured models," DFAEII Working Papers 1988-088X, University of the Basque Country - Department of Foundations of Economic Analysis II.
    2. Christine Bertram & Martin F. Quaas, 2017. "Biodiversity and Optimal Multi-species Ecosystem Management," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(2), pages 321-350, June.
    3. Vincent Martinet & Michel de Lara & Julio Peña-Torres & Héctor Ramírez Cabrera, 2012. "Risk and Sustainability: Assessing Fisheries Management Strategies," Working Papers hal-04141121, HAL.
    4. Alvin Slewion Jueseah & Dadi Mar Kristofersson & Tumi Tómasson & Ogmundur Knutsson, 2020. "A Bio-Economic Analysis of the Liberian Coastal Fisheries," Sustainability, MDPI, vol. 12(23), pages 1-21, November.
    5. Tahvonen, Olli & Quaas, Martin F. & Voss, Rüdiger, 2018. "Harvesting selectivity and stochastic recruitment in economic models of age-structured fisheries," Journal of Environmental Economics and Management, Elsevier, vol. 92(C), pages 659-676.
    6. Quaas, Martin F. & Requate, Till & Ruckes, Kirsten & Skonhoft, Anders & Vestergaard, Niels & Voss, Rudi, 2013. "Incentives for optimal management of age-structured fish populations," Resource and Energy Economics, Elsevier, vol. 35(2), pages 113-134.
    7. Villasante, Sebastian & Pierce, Graham J. & Pita, Cristina & Guimeráns, César Pazos & Garcia Rodrigues, João & Antelo, Manel & Da Rocha, José María & Cutrín, Javier García & Hastie, Lee C. & Veiga, Pe, 2016. "Fishers' perceptions about the EU discards policy and its economic impact on small-scale fisheries in Galicia (North West Spain)," Ecological Economics, Elsevier, vol. 130(C), pages 130-138.
    8. Vincent Martinet & Julio Peña-Torres & Michel Lara & Hector Ramírez C., 2016. "Risk and Sustainability: Assessing Fishery Management Strategies," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 64(4), pages 683-707, August.
    9. José-María Da-Rocha & Rosa Mato-Amboage, 2016. "On the Benefits of Including Age-Structure in Harvest Control Rules," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 64(4), pages 619-641, August.
    10. Colla-De-Robertis, Esteban & Da-Rocha, Jose-Maria & García-Cutrin, Javier & Gutiérrez, María-José & Prellezo, Raul, 2018. "A bayesian estimation of the economic effects of the Common Fisheries Policy on the Galician Fleet: a dynamic stochastic general equilibrium approach," MPRA Paper 89944, University Library of Munich, Germany.
    11. Da Rocha, José María & Gutiérrez Huerta, María José & Villasante, Sebastián, 2013. "Economic Effects of Global Warming under Stock Growth Uncertainty: The European Sardine Fishery," DFAEII Working Papers 1988-088X, University of the Basque Country - Department of Foundations of Economic Analysis II.
    12. Jeetendra Prakash Aryal & Tek B. Sapkota & Ritika Khurana & Arun Khatri-Chhetri & Dil Bahadur Rahut & M. L. Jat, 2020. "Climate change and agriculture in South Asia: adaptation options in smallholder production systems," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5045-5075, August.
    13. Ni, Yuanming & Steinshamn, Stein I. & Kvamsdal, Sturla F., 2022. "Negative shocks in an age-structured bioeconomic model and how to deal with them," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 15-30.
    14. repec:mse:cesdoc:13002r is not listed on IDEAS
    15. Qiang Wang & Yuanfan Li & Rongrong Li, 2024. "Rethinking the environmental Kuznets curve hypothesis across 214 countries: the impacts of 12 economic, institutional, technological, resource, and social factors," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-19, December.
    16. Kira Lancker & Julia Bronnmann, 2022. "Substitution Preferences for Fish in Senegal," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 82(4), pages 1015-1045, August.
    17. Linnenluecke, Martina K. & Smith, Tom & McKnight, Brent, 2016. "Environmental finance: A research agenda for interdisciplinary finance research," Economic Modelling, Elsevier, vol. 59(C), pages 124-130.
    18. Behringer, Stefan & Upmann, Thorsten, 2014. "Optimal harvesting of a spatial renewable resource," Journal of Economic Dynamics and Control, Elsevier, vol. 42(C), pages 105-120.
    19. Shahzad, Muhammad Faisal & Abdulai, Awudu, 2020. "Adaptation to extreme weather conditions and farm performance in rural Pakistan," Agricultural Systems, Elsevier, vol. 180(C).
    20. Knoke, Thomas & Kindu, Mengistie & Jarisch, Isabelle & Gosling, Elizabeth & Friedrich, Stefan & Bödeker, Kai & Paul, Carola, 2020. "How considering multiple criteria, uncertainty scenarios and biological interactions may influence the optimal silvicultural strategy for a mixed forest," Forest Policy and Economics, Elsevier, vol. 118(C).
    21. Martin F. Quaas & Till Requate, 2013. "Sushi or Fish Fingers? Seafood Diversity, Collapsing Fish Stocks, and Multispecies Fishery Management," Scandinavian Journal of Economics, Wiley Blackwell, vol. 115(2), pages 381-422, April.

    More about this item

    Keywords

    Optimisation in age-structure models; Stability preferences; Natural resource management; Constant-elasticity-of-substitution utility function;
    All these keywords.

    JEL classification:

    • Q5 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:75298. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.