IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v195y2022ics0308521x21002584.html
   My bibliography  Save this article

Alfalfa and silage maize intercropping provides comparable productivity and profitability with lower environmental impacts than wheat–maize system in the North China plain

Author

Listed:
  • Xu, Ruixuan
  • Zhao, Haiming
  • Liu, Guibo
  • Li, Yuan
  • Li, Shoujiao
  • Zhang, Yingjun
  • Liu, Nan
  • Ma, Lei

Abstract

The sustainability of winter wheat (Triticum aestivum L.) − summer maize (Zea mays L.) rotation (W − M), which is commonly practiced in the North China Plain (NCP), is threatened by severe groundwater deficits and environmental pollution due to excessive nitrogen (N) applications.

Suggested Citation

  • Xu, Ruixuan & Zhao, Haiming & Liu, Guibo & Li, Yuan & Li, Shoujiao & Zhang, Yingjun & Liu, Nan & Ma, Lei, 2022. "Alfalfa and silage maize intercropping provides comparable productivity and profitability with lower environmental impacts than wheat–maize system in the North China plain," Agricultural Systems, Elsevier, vol. 195(C).
  • Handle: RePEc:eee:agisys:v:195:y:2022:i:c:s0308521x21002584
    DOI: 10.1016/j.agsy.2021.103305
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X21002584
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2021.103305?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. van Oort, P.A.J. & Wang, G. & Vos, J. & Meinke, H. & Li, B.G. & Huang, J.K. & van der Werf, W., 2016. "Towards groundwater neutral cropping systems in the Alluvial Fans of the North China Plain," Agricultural Water Management, Elsevier, vol. 165(C), pages 131-140.
    2. Jing Wang & Enli Wang & Xiaoguang Yang & Fusuo Zhang & Hong Yin, 2012. "Increased yield potential of wheat-maize cropping system in the North China Plain by climate change adaptation," Climatic Change, Springer, vol. 113(3), pages 825-840, August.
    3. Li, Rong & Hou, Xianqing & Jia, Zhikuan & Han, Qingfang & Ren, Xiaolong & Yang, Baoping, 2013. "Effects on soil temperature, moisture, and maize yield of cultivation with ridge and furrow mulching in the rainfed area of the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 116(C), pages 101-109.
    4. Jia, Xucun & Shao, Lijie & Liu, Peng & Zhao, Bingqiang & Gu, Limin & Dong, Shuting & Bing, So Hwat & Zhang, Jiwang & Zhao, Bin, 2014. "Effect of different nitrogen and irrigation treatments on yield and nitrate leaching of summer maize (Zea mays L.) under lysimeter conditions," Agricultural Water Management, Elsevier, vol. 137(C), pages 92-103.
    5. Xinping Chen & Zhenling Cui & Mingsheng Fan & Peter Vitousek & Ming Zhao & Wenqi Ma & Zhenlin Wang & Weijian Zhang & Xiaoyuan Yan & Jianchang Yang & Xiping Deng & Qiang Gao & Qiang Zhang & Shiwei Guo , 2014. "Producing more grain with lower environmental costs," Nature, Nature, vol. 514(7523), pages 486-489, October.
    6. Zemin Zhang & Changhe Lu, 2019. "Spatio-Temporal Pattern Change of Winter Wheat Production and Its Implications in the North China Plain," Sustainability, MDPI, vol. 11(11), pages 1-14, May.
    7. Sun, Qinping & Kröbel, Roland & Müller, Torsten & Römheld, Volker & Cui, Zhenling & Zhang, Fusuo & Chen, Xinping, 2011. "Optimization of yield and water-use of different cropping systems for sustainable groundwater use in North China Plain," Agricultural Water Management, Elsevier, vol. 98(5), pages 808-814, March.
    8. Xiao, Dengpan & Shen, Yanjun & Qi, Yongqing & Moiwo, Juana P. & Min, Leilei & Zhang, Yucui & Guo, Ying & Pei, Hongwei, 2017. "Impact of alternative cropping systems on groundwater use and grain yields in the North China Plain Region," Agricultural Systems, Elsevier, vol. 153(C), pages 109-117.
    9. Delphine Renard & David Tilman, 2019. "National food production stabilized by crop diversity," Nature, Nature, vol. 571(7764), pages 257-260, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruixuan Xu & Haiming Zhao & Yongliang You & Ruixin Wu & Guibo Liu & Zhiqiang Sun & Bademuqiqige & Yingjun Zhang, 2022. "Effects of Intercropping, Nitrogen Fertilization and Corn Plant Density on Yield, Crude Protein Accumulation and Ensiling Characteristics of Silage Corn Interseeded into Alfalfa Stand," Agriculture, MDPI, vol. 12(3), pages 1-15, March.
    2. Chen, Ning & Li, Xianyue & Šimůnek, Jiří & Shi, Haibin & Zhang, Yuehong & Hu, Qi, 2022. "Quantifying inter-species nitrogen competition in the tomato-corn intercropping system with different spatial arrangements," Agricultural Systems, Elsevier, vol. 201(C).
    3. Xia, Haiyong & Qiao, Yuetong & Li, Xiaojing & Xue, Yanhui & Wang, Na & Yan, Wei & Xue, Yanfang & Cui, Zhenling & van der Werf, Wopke, 2023. "Moderation of nitrogen input and integration of legumes via intercropping enable sustainable intensification of wheat-maize double cropping in the North China Plain: A four-year rotation study," Agricultural Systems, Elsevier, vol. 204(C).
    4. Haoze Zhang & Mingliang Gao & Fuying Liu & Huabin Yuan & Zhendong Liu & Mingming Zhang & Quanqi Li & Rui Zong, 2024. "Characteristic of soil moisture utilisation with different water-sensitive cultivars of summer maize in the North China Plain," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 70(4), pages 210-219.
    5. repec:caa:jnlpse:v:preprint:id:401-2023-pse is not listed on IDEAS

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luo, Jianmei & Shen, Yanjun & Qi, Yongqing & Zhang, Yucui & Xiao, Dengpan, 2018. "Evaluating water conservation effects due to cropping system optimization on the Beijing-Tianjin-Hebei plain, China," Agricultural Systems, Elsevier, vol. 159(C), pages 32-41.
    2. Zhong, Honglin & Sun, Laixiang & Fischer, Günther & Tian, Zhan & Liang, Zhuoran, 2019. "Optimizing regional cropping systems with a dynamic adaptation strategy for water sustainable agriculture in the Hebei Plain," Agricultural Systems, Elsevier, vol. 173(C), pages 94-106.
    3. Xiao, Dengpan & Shen, Yanjun & Qi, Yongqing & Moiwo, Juana P. & Min, Leilei & Zhang, Yucui & Guo, Ying & Pei, Hongwei, 2017. "Impact of alternative cropping systems on groundwater use and grain yields in the North China Plain Region," Agricultural Systems, Elsevier, vol. 153(C), pages 109-117.
    4. Ren, Pinpin & Huang, Feng & Li, Baoguo, 2022. "Spatiotemporal patterns of water consumption and irrigation requirements of wheat-maize in the Huang-Huai-Hai Plain, China and options of their reduction," Agricultural Water Management, Elsevier, vol. 263(C).
    5. Sun, Hongyong & Zhang, Xiying & Liu, Xiujing & Liu, Xiuwei & Shao, Liwei & Chen, Suying & Wang, Jintao & Dong, Xinliang, 2019. "Impact of different cropping systems and irrigation schedules on evapotranspiration, grain yield and groundwater level in the North China Plain," Agricultural Water Management, Elsevier, vol. 211(C), pages 202-209.
    6. Liang, Hao & Qin, Wei & Hu, Kelin & Tao, Hongbing & Li, Baoguo, 2019. "Modelling groundwater level dynamics under different cropping systems and developing groundwater neutral systems in the North China Plain," Agricultural Water Management, Elsevier, vol. 213(C), pages 732-741.
    7. Yang, Xiaolin & Jin, Xinnan & Chu, Qingquan & Pacenka, Steven & Steenhuis, Tammo S., 2021. "Impact of climate variation from 1965 to 2016 on cotton water requirements in North China Plain," Agricultural Water Management, Elsevier, vol. 243(C).
    8. Zhong, Honglin & Sun, Laixiang & Fischer, Günther & Tian, Zhan & van Velthuizen, Harrij & Liang, Zhuoran, 2017. "Mission Impossible? Maintaining regional grain production level and recovering local groundwater table by cropping system adaptation across the North China Plain," Agricultural Water Management, Elsevier, vol. 193(C), pages 1-12.
    9. Chen, Qiaomin & Liu, Yujie & Ge, Quansheng & Pan, Tao, 2018. "Impacts of historic climate variability and land use change on winter wheat climatic productivity in the North China Plain during 1980–2010," Land Use Policy, Elsevier, vol. 76(C), pages 1-9.
    10. Dengpan Xiao & Huizi Bai & De Li Liu, 2018. "Impact of Future Climate Change on Wheat Production: A Simulated Case for China’s Wheat System," Sustainability, MDPI, vol. 10(4), pages 1-15, April.
    11. Luo, Jianmei & Zhang, Hongmei & Qi, Yongqing & Pei, Hongwei & Shen, Yanjun, 2022. "Balancing water and food by optimizing the planting structure in the Beijing–Tianjin–Hebei region, China," Agricultural Water Management, Elsevier, vol. 262(C).
    12. Yan, Zongzheng & Zhang, Xiying & Rashid, Muhammad Adil & Li, Hongjun & Jing, Haichun & Hochman, Zvi, 2020. "Assessment of the sustainability of different cropping systems under three irrigation strategies in the North China Plain under climate change," Agricultural Systems, Elsevier, vol. 178(C).
    13. Xiao, Dengpan & Liu, De Li & Wang, Bin & Feng, Puyu & Bai, Huizi & Tang, Jianzhao, 2020. "Climate change impact on yields and water use of wheat and maize in the North China Plain under future climate change scenarios," Agricultural Water Management, Elsevier, vol. 238(C).
    14. Liang, Shuoshuo & Li, Lu & An, Ping & Chen, Suying & Shao, Liwei & Zhang, Xiying, 2021. "Spatial soil water and nutrient distribution affecting the water productivity of winter wheat," Agricultural Water Management, Elsevier, vol. 256(C).
    15. Zhao, Jie & Zhang, Xuepeng & Yang, Yadong & Zang, Huadong & Yan, Peng & Meki, Manyowa N. & Doro, Luca & Sui, Peng & Jeong, Jaehak & Zeng, Zhaohai, 2021. "Alternative cropping systems for groundwater irrigation sustainability in the North China Plain," Agricultural Water Management, Elsevier, vol. 250(C).
    16. Wang, Hongzhang & Ren, Hao & Han, Kun & Li, Geng & Zhang, Lihua & Zhao, Yali & Liu, Yuee & He, Qijin & Zhang, Jiwang & Zhao, Bin & Ren, Baizhao & Liu, Peng, 2023. "Improving the net energy and energy utilization efficiency of maize production systems in the North China Plain," Energy, Elsevier, vol. 274(C).
    17. Ali, Shahzad & Xu, Yueyue & Jia, Qianmin & Ma, Xiangcheng & Ahmad, Irshad & Adnan, Muhammad & Gerard, Rushingabigwi & Ren, Xiaolong & Zhang, Peng & Cai, Tie & Zhang, Jiahua & Jia, Zhikuan, 2018. "Interactive effects of plastic film mulching with supplemental irrigation on winter wheat photosynthesis, chlorophyll fluorescence and yield under simulated precipitation conditions," Agricultural Water Management, Elsevier, vol. 207(C), pages 1-14.
    18. Xiao, Dengpan & Liu, De Li & Feng, Puyu & Wang, Bin & Waters, Cathy & Shen, Yanjun & Qi, Yongqing & Bai, Huizi & Tang, Jianzhao, 2021. "Future climate change impacts on grain yield and groundwater use under different cropping systems in the North China Plain," Agricultural Water Management, Elsevier, vol. 246(C).
    19. Sun, Shuang & Yang, Xiaoguang & Lin, Xiaomao & Sassenrath, Gretchen F. & Li, Kenan, 2018. "Climate-smart management can further improve winter wheat yield in China," Agricultural Systems, Elsevier, vol. 162(C), pages 10-18.
    20. Dong, Qin’ge & Yang, Yuchen & Yu, Kun & Feng, Hao, 2018. "Effects of straw mulching and plastic film mulching on improving soil organic carbon and nitrogen fractions, crop yield and water use efficiency in the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 201(C), pages 133-143.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:195:y:2022:i:c:s0308521x21002584. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.