IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v184y2020ics0308521x20307587.html
   My bibliography  Save this article

Is there a joint lever? Identifying and ranking factors that determine GHG emissions and profitability on dairy farms in Bavaria, Germany

Author

Listed:
  • Zehetmeier, M.
  • Läpple, D.
  • Hoffmann, H.
  • Zerhusen, B.
  • Strobl, M.
  • Meyer-Aurich, A.
  • Kapfer, M.

Abstract

Farms are increasingly expected to contribute to greenhouse gas (GHG) mitigation actions to help governments to achieve GHG reduction commitments. In order to identify key mechanisms for GHG mitigation on farms, many studies use mass flow simulation or optimization models. However, by assuming “best practice” and not accounting for “real farm practices”, these models cannot predict variability between farms. In contrast, studies that include variability between farms can identify determinants that are important factors to reduce GHG emissions. From a farmer's perspective, it is often crucial that these mechanisms also increase farm profitability. The objectives of this article are (1) to explore factors that jointly affect GHG emissions and profitability of dairy farms and, (2) to assess if these factors cause synergies or trade-offs to simultaneously reduce GHG emissions and increase profitability. To assess variability between farms, we utilize detailed site- or farm-specific input variables for a large number of farms. To this end, we combined a detailed high quality dataset of 92 farms for the year 2013 in Bavaria, Germany. In relation to GHG emissions, we collected emission factors from national and international life cycle analysis databases, and applied national and site-specific GHG emission models. Our global sensitivity analysis identified five factors affecting GHG emissions per kg of fat and protein corrected milk in the following order of relative importance (i.e. proportion of farm variability explained): feed use efficiency (26%), weighted nitrogen balance (23%), site specific nitrogen emission factor (15%), milk yield (13%), and replacement rate (8%). Of these five factors, feed use efficiency and milk yield were also relatively important factors for profitability. However, milk yield is strongly interlinked with beef output, an important by-product of our sample dairy farms, and thus needs special attention when defining effective GHG reduction targets. Site-specific nitrogen emission factors cannot be influenced directly by farmers. This leaves three main determinants for farm variability between farms of GHG emissions i.e. on field nitrogen use efficiency, feed use efficiency and replacement rate. Since feed use efficiency was also identified as an important factor increasing profitability, this could be addressed by advisory services assessing synergies between profitability and GHG emissions. On field nitrogen use efficiency and replacement rate were not identified as an important factor affecting profitability and thus may be addressed by additional incentives for farmers, advisory service, or stricter regulations.

Suggested Citation

  • Zehetmeier, M. & Läpple, D. & Hoffmann, H. & Zerhusen, B. & Strobl, M. & Meyer-Aurich, A. & Kapfer, M., 2020. "Is there a joint lever? Identifying and ranking factors that determine GHG emissions and profitability on dairy farms in Bavaria, Germany," Agricultural Systems, Elsevier, vol. 184(C).
  • Handle: RePEc:eee:agisys:v:184:y:2020:i:c:s0308521x20307587
    DOI: 10.1016/j.agsy.2020.102897
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X20307587
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2020.102897?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alejandra Gonzalez-Mejia & David Styles & Paul Wilson & James Gibbons, 2018. "Metrics and methods for characterizing dairy farm intensification using farm survey data," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-18, May.
    2. Andreas Meyer-Aurich & Jørgen Olesen & Annette Prochnow & Reiner Brunsch, 2013. "Greenhouse gas mitigation with scarce land: The potential contribution of increased nitrogen input," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(7), pages 921-932, October.
    3. Dominic Moran & Michael Macleod & Eileen Wall & Vera Eory & Alistair McVittie & Andrew Barnes & Robert Rees & Cairistiona F. E. Topp & Andrew Moxey, 2011. "Marginal Abatement Cost Curves for UK Agricultural Greenhouse Gas Emissions," Journal of Agricultural Economics, Wiley Blackwell, vol. 62(1), pages 93-118, February.
    4. Groemping, Ulrike, 2006. "Relative Importance for Linear Regression in R: The Package relaimpo," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 17(i01).
    5. Vellinga, T.V. & de Vries, M., 2018. "Effectiveness of climate change mitigation options considering the amount of meat produced in dairy systems," Agricultural Systems, Elsevier, vol. 162(C), pages 136-144.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stetter, Christian & Wimmer, Stefan & Sauer, Johannes, 2023. "Are Intensive Farms More Emission-Efficient? Evidence From German Dairy Farms," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 48(1), January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huber, Robert & Tarruella, Marta & Schäfer, David & Finger, Robert, 2023. "Marginal climate change abatement costs in Swiss dairy production considering farm heterogeneity and interaction effects," Agricultural Systems, Elsevier, vol. 207(C).
    2. Alam, M. Jahangir, 2020. "Capital misallocation: Cyclicality and sources," Journal of Economic Dynamics and Control, Elsevier, vol. 112(C).
    3. Du, Limin & Hanley, Aoife & Wei, Chu, 2015. "Estimating the Marginal Abatement Cost Curve of CO2 Emissions in China: Provincial Panel Data Analysis," Energy Economics, Elsevier, vol. 48(C), pages 217-229.
    4. Minihan, Erin S. & Wu, Ziping, 2011. "The Potential Economic and Environmental Costs of GHG Mitigation Measures for Cattle Sectors in Northern Ireland," 85th Annual Conference, April 18-20, 2011, Warwick University, Coventry, UK 108779, Agricultural Economics Society.
    5. Blandford, David & Gaasland, Ivar & Vardal, Erling, 2016. "Now that the party’s over: achieving GHG emission reduction commitments in Norwegian agriculture," 90th Annual Conference, April 4-6, 2016, Warwick University, Coventry, UK 236330, Agricultural Economics Society.
    6. Neaimeh, Myriam & Salisbury, Shawn D. & Hill, Graeme A. & Blythe, Philip T. & Scoffield, Don R. & Francfort, James E., 2017. "Analysing the usage and evidencing the importance of fast chargers for the adoption of battery electric vehicles," Energy Policy, Elsevier, vol. 108(C), pages 474-486.
    7. B. Henderson & A. Golub & D. Pambudi & T. Hertel & C. Godde & M. Herrero & O. Cacho & P. Gerber, 2018. "The power and pain of market-based carbon policies: a global application to greenhouse gases from ruminant livestock production," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(3), pages 349-369, March.
    8. Wang, Qinying & He, Hong S. & Liu, Kai & Zong, Shengwei & Du, Haibo, 2023. "Comparing simulated tree biomass from daily, monthly, and seasonal climate input of terrestrial ecosystem model," Ecological Modelling, Elsevier, vol. 483(C).
    9. Yayoi Natsume-Kitatani & Hiroshi Mamitsuka, 2016. "Classification of Promoters Based on the Combination of Core Promoter Elements Exhibits Different Histone Modification Patterns," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-18, March.
    10. Wettemann, Patrick Johannes Christopher & Latacz-Lohmann, Uwe, 2017. "An efficiency-based concept to assess potential cost and greenhouse gas savings on German dairy farms," Agricultural Systems, Elsevier, vol. 152(C), pages 27-37.
    11. Jeong, Kwangbok & Hong, Taehoon & Kim, Jimin & Cho, Kyuman, 2019. "Development of a multi-objective optimization model for determining the optimal CO2 emissions reduction strategies for a multi-family housing complex," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 118-131.
    12. Blandford, David & Gaasland, Ivar & Vårdal, Erling, 2014. "GHG abatement welfare cost curves for Norwegian agriculture," 88th Annual Conference, April 9-11, 2014, AgroParisTech, Paris, France 169734, Agricultural Economics Society.
    13. Xing Zhao & Xin Zhang, 2022. "Research on the Evaluation and Regional Differences in Carbon Emissions Efficiency of Cultural and Related Manufacturing Industries in China’s Yangtze River Basin," Sustainability, MDPI, vol. 14(17), pages 1-22, August.
    14. Cristina Pavanello & Marcello Franchini & Stefano Bovolenta & Elisa Marraccini & Mirco Corazzin, 2024. "Sustainability Indicators for Dairy Cattle Farms in European Union Countries: A Systematic Literature Review," Sustainability, MDPI, vol. 16(10), pages 1-25, May.
    15. Isabel Teichmann, 2015. "An Economic Assessment of Soil Carbon Sequestration with Biochar in Germany," Discussion Papers of DIW Berlin 1476, DIW Berlin, German Institute for Economic Research.
    16. Albert Ayorinde Abegunde, 2017. "Local communities’ belief in climate change in a rural region of Sub-Saharan Africa," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(4), pages 1489-1522, August.
    17. Luong Hai Nguyen & Tsunemi Watanabe, 2017. "The Impact of Project Organizational Culture on the Performance of Construction Projects," Sustainability, MDPI, vol. 9(5), pages 1-21, May.
    18. Tang, Kai & He, Chuantian & Ma, Chunbo & Wang, Dong, 2019. "Does carbon farming provide a cost-effective option to mitigate GHG emissions? Evidence from China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(3), July.
    19. Benjamin Dequiedt & Vera Eory & Juliette Maire & Cairstiona F.E. Topp & Robert Rees & Peter Zander & Moritz Reckling & Nicole Schlaefke, 2015. "Mitigation costs through alternative crop rotations in agriculture: an assessment for 5 European regions," Working Papers 1502, Chaire Economie du climat.
    20. Kragt, M.E. & Pannell, D.J. & McVittie, A. & Stott, A.W. & Vosough Ahmadi, B. & Wilson, P., 2016. "Improving interdisciplinary collaboration in bio-economic modelling for agricultural systems," Agricultural Systems, Elsevier, vol. 143(C), pages 217-224.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:184:y:2020:i:c:s0308521x20307587. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.