IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v165y2018icp264-273.html
   My bibliography  Save this article

Variability and limitations of maize production in Brazil: Potential yield, water-limited yield and yield gaps

Author

Listed:
  • da S. Andrea, Maria Carolina
  • Boote, Kenneth J.
  • Sentelhas, Paulo C.
  • Romanelli, Thiago L.

Abstract

Occurrence of staple crops' yield gaps is object of study worldwide. A theoretical approach, model and statistical-based, was carried out to assess the climate-induced variability of rainfed maize yields and yield gaps in different regions in Central-Southern Brazil in both main growing seasons. A crop simulation model was used to estimate potential (Yp) and water-limited (Yw) yields through thirty crop seasons. Based on observed local farmers' averages and simulated yields, yield gaps related to water deficit (WYg) and crop management (MYg) were determined for first (sowing starting in September) and second (sowing starting in January) typical maize growing seasons. Overall higher average values of Yp and Yw (15.3 and 13.1 t ha−1, respectively) were obtained in the first when compared to second growing season (10.3 and 9.2 t ha−1, respectively). Statistical approaches pointed to similar importance between water and temperature on local biophysical limits in the scenarios. Assessed regions showed greater gaps due to crop management, with absolute averages of 5.7 and 3.2 t ha−1 in the first and second growing seasons, than gaps due to water deficit, with 2.1 and 1.2 t ha−1 in the first and second growing seasons, respectively. Opportunities for increasing average yields by closing the gaps were found to be predominantly through crop management improvements, in higher and more variable absolute levels on first than on second growing season. However, this management must be aligned with local climate, since its variability can determine relatively large gaps, even at intensively managed cropping systems. This study was able to highlight the importance of combining management, climatic and regional characteristics to provide a full perspective on main constraints of maize production increases.

Suggested Citation

  • da S. Andrea, Maria Carolina & Boote, Kenneth J. & Sentelhas, Paulo C. & Romanelli, Thiago L., 2018. "Variability and limitations of maize production in Brazil: Potential yield, water-limited yield and yield gaps," Agricultural Systems, Elsevier, vol. 165(C), pages 264-273.
  • Handle: RePEc:eee:agisys:v:165:y:2018:i:c:p:264-273
    DOI: 10.1016/j.agsy.2018.07.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X17311472
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2018.07.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jonathan A. Foley & Navin Ramankutty & Kate A. Brauman & Emily S. Cassidy & James S. Gerber & Matt Johnston & Nathaniel D. Mueller & Christine O’Connell & Deepak K. Ray & Paul C. West & Christian Balz, 2011. "Solutions for a cultivated planet," Nature, Nature, vol. 478(7369), pages 337-342, October.
    2. Nathaniel D. Mueller & James S. Gerber & Matt Johnston & Deepak K. Ray & Navin Ramankutty & Jonathan A. Foley, 2012. "Closing yield gaps through nutrient and water management," Nature, Nature, vol. 490(7419), pages 254-257, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Batista, Fabiana de Souza & Duku, Confidence & Hein, Lars, 2023. "Deforestation-induced changes in rainfall decrease soybean-maize yields in Brazil," Ecological Modelling, Elsevier, vol. 486(C).
    2. Liu, Huan & Pequeno, Diego N.L. & Hernández-Ochoa, Ixchel M. & Krupnik, Timothy J. & Sonder, Kai & Xiong, Wei & Xu, Yinlong, 2020. "A consistent calibration across three wheat models to simulate wheat yield and phenology in China," Ecological Modelling, Elsevier, vol. 430(C).
    3. Nóia Júnior, Rogério de Souza & Sentelhas, Paulo Cesar, 2019. "Soybean-maize off-season double crop system in Brazil as affected by El Niño Southern Oscillation phases," Agricultural Systems, Elsevier, vol. 173(C), pages 254-267.
    4. Amiri, E. & Irmak, S. & Araji, H. Ahmadzadeh, 2022. "Assessment of CERES-Maize model in simulating maize growth, yield and soil water content under rainfed, limited and full irrigation," Agricultural Water Management, Elsevier, vol. 259(C).
    5. Battisti, Rafael & Ferreira, Marcelo Dias Paes & Tavares, Érica Basílio & Knapp, Fábio Miguel & Bender, Fabiani Denise & Casaroli, Derblai & Alves Júnior, José, 2020. "Rules for grown soybean-maize cropping system in Midwestern Brazil: Food production and economic profits," Agricultural Systems, Elsevier, vol. 182(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yibo Luan & Wenquan Zhu & Xuefeng Cui & Günther Fischer & Terence P. Dawson & Peijun Shi & Zhenke Zhang, 2019. "Cropland yield divergence over Africa and its implication for mitigating food insecurity," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(5), pages 707-734, June.
    2. Zhang, Bangbang & Li, Xian & Chen, Haibin & Niu, Wenhao & Kong, Xiangbin & Yu, Qiang & Zhao, Minjuan & Xia, Xianli, 2022. "Identifying opportunities to close yield gaps in China by use of certificated cultivars to estimate potential productivity," Land Use Policy, Elsevier, vol. 117(C).
    3. Hampf, Anna C. & Carauta, Marcelo & Latynskiy, Evgeny & Libera, Affonso A.D. & Monteiro, Leonardo & Sentelhas, Paulo & Troost, Christian & Berger, Thomas & Nendel, Claas, 2018. "The biophysical and socio-economic dimension of yield gaps in the southern Amazon – A bio-economic modelling approach," Agricultural Systems, Elsevier, vol. 165(C), pages 1-13.
    4. Letta, Marco & Montalbano, Pierluigi & Tol, Richard S.J., 2018. "Temperature shocks, short-term growth and poverty thresholds: Evidence from rural Tanzania," World Development, Elsevier, vol. 112(C), pages 13-32.
    5. Guo, Xiao-Xia & Li, Ke-Li & Liu, Yi-Ze & Zhuang, Ming-Hao & Wang, Chong, 2022. "Toward the economic-environmental sustainability of smallholder farming systems through judicious management strategies and optimized planting structures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    6. Mario Herrero & Benjamin Henderson & Petr Havlík & Philip K. Thornton & Richard T. Conant & Pete Smith & Stefan Wirsenius & Alexander N. Hristov & Pierre Gerber & Margaret Gill & Klaus Butterbach-Bahl, 2016. "Greenhouse gas mitigation potentials in the livestock sector," Nature Climate Change, Nature, vol. 6(5), pages 452-461, May.
    7. Gao, Yukun & Zhao, Hongfang & Zhao, Chuang & Hu, Guohua & Zhang, Han & Liu, Xue & Li, Nan & Hou, Haiyan & Li, Xia, 2022. "Spatial and temporal variations of maize and wheat yield gaps and their relationships with climate in China," Agricultural Water Management, Elsevier, vol. 270(C).
    8. Rattan Lal, 2014. "Climate Strategic Soil Management," Challenges, MDPI, vol. 5(1), pages 1-32, February.
    9. Zhu, Yuanyuan & Wang, Ziwei & Zhu, Xiaohua, 2023. "New reflections on food security and land use strategies based on the evolution of Chinese dietary patterns," Land Use Policy, Elsevier, vol. 126(C).
    10. Zhou, Bing-Bing & Aggarwal, Rimjhim & Wu, Jianguo & Lv, Ligang, 2021. "Urbanization-associated farmland loss: A macro-micro comparative study in China," Land Use Policy, Elsevier, vol. 101(C).
    11. Elżbieta Wójcik-Gront & Marzena Iwańska & Agnieszka Wnuk & Tadeusz Oleksiak, 2021. "The Analysis of Wheat Yield Variability Based on Experimental Data from 2008–2018 to Understand the Yield Gap," Agriculture, MDPI, vol. 12(1), pages 1-13, December.
    12. Röös, Elin & Patel, Mikaela & Spångberg, Johanna, 2016. "Producing oat drink or cow's milk on a Swedish farm — Environmental impacts considering the service of grazing, the opportunity cost of land and the demand for beef and protein," Agricultural Systems, Elsevier, vol. 142(C), pages 23-32.
    13. Farid Farrokhi & Heitor S. Pellegrina, 2020. "Global Trade and Margins of Productivity in Agriculture," NBER Working Papers 27350, National Bureau of Economic Research, Inc.
    14. Gambin, Brenda L. & Coyos, Tomás & Di Mauro, Guido & Borrás, Lucas & Garibaldi, Lucas A., 2016. "Exploring genotype, management, and environmental variables influencing grain yield of late-sown maize in central Argentina," Agricultural Systems, Elsevier, vol. 146(C), pages 11-19.
    15. Baldos, Uris Lantz & Thomas Hertel, 2014. "Bursting the Bubble: A Long Run Perspective on Crop Commodity Prices," GTAP Working Papers 4574, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    16. Weltin, Meike & Hüttel, Silke, 2019. "Farm eco-efficiency: Can sustainable intensification make the difference?," FORLand Working Papers 10 (2019), Humboldt University Berlin, DFG Research Unit 2569 FORLand "Agricultural Land Markets – Efficiency and Regulation".
    17. René Rietra & Marius Heinen & Oene Oenema, 2022. "A Review of Crop Husbandry and Soil Management Practices Using Meta-Analysis Studies: Towards Soil-Improving Cropping Systems," Land, MDPI, vol. 11(2), pages 1-31, February.
    18. Souhil Harchaoui & Petros Chatzimpiros, 2018. "Energy, Nitrogen, and Farm Surplus Transitions in Agriculture from Historical Data Modeling. France, 1882–2013," Post-Print hal-02999180, HAL.
    19. Andrew J Tanentzap & Anthony Lamb & Susan Walker & Andrew Farmer, 2015. "Resolving Conflicts between Agriculture and the Natural Environment," PLOS Biology, Public Library of Science, vol. 13(9), pages 1-13, September.
    20. Mohammad Rokhafrouz & Hooman Latifi & Ali A. Abkar & Tomasz Wojciechowski & Mirosław Czechlowski & Ali Sadeghi Naieni & Yasser Maghsoudi & Gniewko Niedbała, 2021. "Simplified and Hybrid Remote Sensing-Based Delineation of Management Zones for Nitrogen Variable Rate Application in Wheat," Agriculture, MDPI, vol. 11(11), pages 1-24, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:165:y:2018:i:c:p:264-273. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.