IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v154y2017icp124-132.html
   My bibliography  Save this article

An economic and greenhouse gas emissions evaluation of pasture-based dairy calf-to-beef production systems

Author

Listed:
  • Murphy, Brian
  • Crosson, Paul
  • Kelly, Alan K.
  • Prendiville, Robert

Abstract

The objectives of the current study were to investigate the effects of production system on Holstein-Frisian bulls and steers and also to evaluate the profitability and greenhouse gas (GHG) emissions of these production systems. Calves were assigned to one of five production systems; bulls finished indoors on a concentrate ad libitum diet for 200days and slaughtered at 15months of age (15MO); bulls finished indoors on a concentrate ad libitum diet for 100days and slaughtered at 19months of age (19AL); bulls supplemented with 5kg of concentrate dry matter (DM) per head daily at pasture for 100days and slaughtered at 19months of age (19PC); steers supplemented with 5kg DM of concentrate per head daily at pasture for 68days and slaughtered at 21months of age (21MO) and steers finished indoors on grass silage plus 5kg DM of concentrate per head daily for 92days and slaughtered at 24months of age (24MO). All calves were rotationally grazed at pasture, supplemented with 1kg DM of concentrates per head daily, during the first season. With the exception of 15MO all production systems were fed grass silage and 1.5kg DM of concentrate during the winter period and returned to pasture for a second season. The Grange Dairy Beef Systems Model was used to simulate whole-farm system effects of production systems while GHG emissions associated with production were simulated using the Beef Systems Greenhouse Gas Emissions Model. Carcass weight was lowest for 21MO, greatest for 19AL and 24MO with both 15MO and 19PC intermediate. Conformation score was greater for bull (15MO, 19AL and 19PC) compared to steer production systems (21MO and 24MO). Fat score was greatest for 24MO and lowest for both 15MO and 19PC; 19AL and 21MO were intermediate. Concentrate feed costs represented 68, 59, 47, 39 and 39% of the total variable costs for 15MO, 19AL, 19PC, 21MO and 24MO, respectively. The most profitable production system was 19PC, while the least profitable systems were 15MO and 24MO. Greenhouse gas emissions, on a per kg live weight and carcass weight basis were lowest for 15MO and 19AL and greatest for 21MO and 24MO. The current study showed that slaughtering bulls at 19months of age and finishing at pasture was the most profitable production system with moderate GHG emissions.

Suggested Citation

  • Murphy, Brian & Crosson, Paul & Kelly, Alan K. & Prendiville, Robert, 2017. "An economic and greenhouse gas emissions evaluation of pasture-based dairy calf-to-beef production systems," Agricultural Systems, Elsevier, vol. 154(C), pages 124-132.
  • Handle: RePEc:eee:agisys:v:154:y:2017:i:c:p:124-132
    DOI: 10.1016/j.agsy.2017.03.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X16306412
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2017.03.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ashfield, A. & Crosson, P. & Wallace, M., 2013. "Simulation modelling of temperate grassland based dairy calf to beef production systems," Agricultural Systems, Elsevier, vol. 115(C), pages 41-50.
    2. Pelletier, Nathan & Pirog, Rich & Rasmussen, Rebecca, 2010. "Comparative life cycle environmental impacts of three beef production strategies in the Upper Midwestern United States," Agricultural Systems, Elsevier, vol. 103(6), pages 380-389, July.
    3. Morel, Kevin & Farrié, Jean-Pierre & Renon, Julien & Manneville, Vincent & Agabriel, Jacques & Devun, Jean, 2016. "Environmental impacts of cow-calf beef systems with contrasted grassland management and animal production strategies in the Massif Central, France," Agricultural Systems, Elsevier, vol. 144(C), pages 133-143.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Taylor, R.F. & McGee, M. & Kelly, A.K. & Crosson, P., 2020. "Bioeconomic and greenhouse gas emissions modelling of the factors influencing technical efficiency of temperate grassland-based suckler calf-to-beef production systems," Agricultural Systems, Elsevier, vol. 183(C).
    2. Kearney, M. & O'Riordan, E.G. & McGee, M. & Breen, J. & Crosson, P., 2022. "Farm-level modelling of bioeconomic, greenhouse gas emissions and feed-food performance of pasture-based dairy-beef systems," Agricultural Systems, Elsevier, vol. 203(C).
    3. McPhee, Malcolm J. & Evered, Mark & Andrews, Todd & Pacheco, David & Dougherty, Holland C. & Ingham, Aaron B. & Harden, Steven & Crean, Jason & Roche, Leslie & Eastburn, Danny J. & Oltjen, James W. & , 2019. "Beef production simulation of nitrate and lipid supplements for pasture and rangeland fed enterprises," Agricultural Systems, Elsevier, vol. 170(C), pages 19-27.
    4. Kearney, M. & O'Riordan, E.G. & Byrne, N. & Breen, J. & Crosson, P., 2023. "Mitigation of greenhouse gas emissions in pasture-based dairy-beef production systems," Agricultural Systems, Elsevier, vol. 211(C).
    5. Henn, Daniel & Humphreys, James & Duffy, Colm & Gibbons, James & Styles, David, 2023. "Improved representation of cattle herd dynamics for bio-physical modelling of pathways to a climate neutral land sector," Agricultural Systems, Elsevier, vol. 212(C).
    6. McGee, M. & Moloney, A.P. & O'Riordan, E.G. & Regan, M. & Lenehan, C. & Kelly, A.K. & Crosson, P., 2023. "Pasture-finishing of late-maturing bulls or steers in a suckler calf-to-beef system: Animal production, meat quality, economics, greenhouse gas emissions and human-edible food-feed efficiency," Agricultural Systems, Elsevier, vol. 209(C).
    7. McGee, M. & Lenehan, C. & Crosson, P. & O'Riordan, E.G. & Kelly, A.K. & Moran, L. & Moloney, A.P., 2022. "Performance, meat quality, profitability, and greenhouse gas emissions of suckler bulls from pasture-based compared to an indoor high-concentrate weanling-to-beef finishing system," Agricultural Systems, Elsevier, vol. 198(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. González-Quintero, Ricardo & van Wijk, Mark T. & Ruden, Alejandro & Gómez, Manuel & Pantevez, Heiber & Castro-Llanos, Fabio & Notenbaert, An & Arango, Jacobo, 2022. "Yield gap analysis to identify attainable milk and meat productivities and the potential for greenhouse gas emissions mitigation in cattle systems of Colombia," Agricultural Systems, Elsevier, vol. 195(C).
    2. Kearney, M. & O'Riordan, E.G. & McGee, M. & Breen, J. & Crosson, P., 2022. "Farm-level modelling of bioeconomic, greenhouse gas emissions and feed-food performance of pasture-based dairy-beef systems," Agricultural Systems, Elsevier, vol. 203(C).
    3. McGee, M. & Moloney, A.P. & O'Riordan, E.G. & Regan, M. & Lenehan, C. & Kelly, A.K. & Crosson, P., 2023. "Pasture-finishing of late-maturing bulls or steers in a suckler calf-to-beef system: Animal production, meat quality, economics, greenhouse gas emissions and human-edible food-feed efficiency," Agricultural Systems, Elsevier, vol. 209(C).
    4. Danilo Bertoni & Daniele Cavicchioli & Franco Donzelli & Giovanni Ferrazzi & Dario G. Frisio & Roberto Pretolani & Elena Claire Ricci & Vera Ventura, 2018. "Recent Contributions of Agricultural Economics Research in the Field of Sustainable Development," Agriculture, MDPI, vol. 8(12), pages 1-20, December.
    5. Gazzarin, Christian & Jan, Pierrick, 2024. "Sustainable intensification of grass-based beef production systems in alpine regions: How to increase economic efficiency while preserving biodiversity?," Agricultural Systems, Elsevier, vol. 214(C).
    6. Venkat, Kumar, 2012. "The Climate Change and Economic Impacts of Food Waste in the United States," International Journal on Food System Dynamics, International Center for Management, Communication, and Research, vol. 2(4), pages 1-16, April.
    7. McGee, M. & Lenehan, C. & Crosson, P. & O'Riordan, E.G. & Kelly, A.K. & Moran, L. & Moloney, A.P., 2022. "Performance, meat quality, profitability, and greenhouse gas emissions of suckler bulls from pasture-based compared to an indoor high-concentrate weanling-to-beef finishing system," Agricultural Systems, Elsevier, vol. 198(C).
    8. Linnea Laestadius & Roni Neff & Colleen Barry & Shannon Frattaroli, 2013. "Meat consumption and climate change: the role of non-governmental organizations," Climatic Change, Springer, vol. 120(1), pages 25-38, September.
    9. Helen Harwatt & Joan Sabaté & Gidon Eshel & Sam Soret & William Ripple, 2017. "Substituting beans for beef as a contribution toward US climate change targets," Climatic Change, Springer, vol. 143(1), pages 261-270, July.
    10. White, Robin R. & Brady, Michael, 2014. "Can consumers’ willingness to pay incentivize adoption of environmental impact reducing technologies in meat animal production?," Food Policy, Elsevier, vol. 49(P1), pages 41-49.
    11. Villalba, D. & Díez-Unquera, B. & Carrascal, A. & Bernués, A. & Ruiz, R., 2019. "Multi-objective simulation and optimisation of dairy sheep farms: Exploring trade-offs between economic and environmental outcomes," Agricultural Systems, Elsevier, vol. 173(C), pages 107-118.
    12. White, Robin R. & Brady, Michael & Capper, Judith L. & Johnson, Kristen A., 2014. "Optimizing diet and pasture management to improve sustainability of U.S. beef production," Agricultural Systems, Elsevier, vol. 130(C), pages 1-12.
    13. Mosnier, Claire & Duclos, Anne & Agabriel, Jacques & Gac, Armelle, 2017. "Orfee: A bio-economic model to simulate integrated and intensive management of mixed crop-livestock farms and their greenhouse gas emissions," Agricultural Systems, Elsevier, vol. 157(C), pages 202-215.
    14. Andrea Bragaglio & Ada Braghieri & Corrado Pacelli & Fabio Napolitano, 2020. "Environmental Impacts of Beef as Corrected for the Provision of Ecosystem Services," Sustainability, MDPI, vol. 12(9), pages 1-15, May.
    15. Bonnin, Dennis & Tabacco, Ernesto & Borreani, Giorgio, 2021. "Variability of greenhouse gas emissions and economic performances on 10 Piedmontese beef farms in North Italy," Agricultural Systems, Elsevier, vol. 194(C).
    16. Raymond L. Desjardins & Devon E. Worth & Xavier P. C. Vergé & Dominique Maxime & Jim Dyer & Darrel Cerkowniak, 2012. "Carbon Footprint of Beef Cattle," Sustainability, MDPI, vol. 4(12), pages 1-23, December.
    17. María I. Nieto & Olivia Barrantes & Liliana Privitello & Ramón Reiné, 2018. "Greenhouse Gas Emissions from Beef Grazing Systems in Semi-Arid Rangelands of Central Argentina," Sustainability, MDPI, vol. 10(11), pages 1-22, November.
    18. Elio Romano & Rocco Roma & Flavio Tidona & Giorgio Giraffa & Andrea Bragaglio, 2021. "Dairy Farms and Life Cycle Assessment (LCA): The Allocation Criterion Useful to Estimate Undesirable Products," Sustainability, MDPI, vol. 13(8), pages 1-24, April.
    19. Adriana Rivera-Huerta & María de la Salud Rubio Lozano & Alejandro Padilla-Rivera & Leonor Patricia Güereca, 2019. "Social Sustainability Assessment in Livestock Production: A Social Life Cycle Assessment Approach," Sustainability, MDPI, vol. 11(16), pages 1-22, August.
    20. Kearney, M. & O'Riordan, E.G. & Byrne, N. & Breen, J. & Crosson, P., 2023. "Mitigation of greenhouse gas emissions in pasture-based dairy-beef production systems," Agricultural Systems, Elsevier, vol. 211(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:154:y:2017:i:c:p:124-132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.