IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v122y2017icp11-24.html
   My bibliography  Save this article

Environmental impacts of energy use in wheat tillage systems: A comparative life cycle assessment (LCA) study in Iran

Author

Listed:
  • Houshyar, Ehsan
  • Grundmann, Philipp

Abstract

The agricultural sector is facing increasing societal expectations to contribute to the global reduction of impacts on the environment. This study aims to evaluate energy use and environmental impacts of different winter wheat tillage systems in the central Fars province, Southwest Iran. To meet the objectives, different energy indices and environmental impact categories were assessed for five wheat tillage systems; two conventional tillage systems: CT1 and CT2, and three conservation tillage systems: CMT (moldboard plough and combined seeder), RDT (reduced tillage) and NT (no-tillage). Total average energy consumption was estimated at 30,000 MJ/ha caused mainly by fertilizers, diesel fuel, water and seed inputs. The highest output-input energy ratio and energy productivity were observed in the conservation tillage systems RDT followed by NT and CMT. The LCA analysis confirmed that system RDT is the wheat tillage system in the region with the lowest impacts on the environment, the lowest energy input and the highest benefit to cost ratio compared to all other considered systems.

Suggested Citation

  • Houshyar, Ehsan & Grundmann, Philipp, 2017. "Environmental impacts of energy use in wheat tillage systems: A comparative life cycle assessment (LCA) study in Iran," Energy, Elsevier, vol. 122(C), pages 11-24.
  • Handle: RePEc:eee:energy:v:122:y:2017:i:c:p:11-24
    DOI: 10.1016/j.energy.2017.01.069
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217300695
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.01.069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ozkan, Burhan & Akcaoz, Handan & Fert, Cemal, 2004. "Energy input–output analysis in Turkish agriculture," Renewable Energy, Elsevier, vol. 29(1), pages 39-51.
    2. F. Fallahpour & A. Aminghafouri & A. Ghalegolab Behbahani & M. Bannayan, 2012. "The environmental impact assessment of wheat and barley production by using life cycle assessment (LCA) methodology," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 14(6), pages 979-992, December.
    3. Nemecek, Thomas & Dubois, David & Huguenin-Elie, Olivier & Gaillard, Gérard, 2011. "Life cycle assessment of Swiss farming systems: I. Integrated and organic farming," Agricultural Systems, Elsevier, vol. 104(3), pages 217-232, March.
    4. Townsend, Toby J. & Ramsden, Stephen J. & Wilson, Paul, 2016. "Analysing reduced tillage practices within a bio-economic modelling framework," Agricultural Systems, Elsevier, vol. 146(C), pages 91-102.
    5. Unakitan, G. & Hurma, H. & Yilmaz, F., 2010. "An analysis of energy use efficiency of canola production in Turkey," Energy, Elsevier, vol. 35(9), pages 3623-3627.
    6. Mani, Indra & Kumar, Pradeep & Panwar, J.S. & Kant, Kamal, 2007. "Variation in energy consumption in production of wheat–maize with varying altitudes in hilly regions of Himachal Pradesh, India," Energy, Elsevier, vol. 32(12), pages 2336-2339.
    7. Safa, M. & Samarasinghe, S. & Mohssen, M., 2010. "Determination of fuel consumption and indirect factors affecting it in wheat production in Canterbury, New Zealand," Energy, Elsevier, vol. 35(12), pages 5400-5405.
    8. Pimentel, David & Pimentel, Marcia, 2006. "Global environmental resources versus world population growth," Ecological Economics, Elsevier, vol. 59(2), pages 195-198, September.
    9. Beheshti Tabar, Iman & Keyhani, Alireza & Rafiee, Shaheen, 2010. "Energy balance in Iran's agronomy (1990-2006)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 849-855, February.
    10. Hatirli, Selim Adem & Ozkan, Burhan & Fert, Cemal, 2005. "An econometric analysis of energy input-output in Turkish agriculture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(6), pages 608-623, December.
    11. Taghavifar, Hamid & Mardani, Aref, 2015. "Energy consumption analysis of wheat production in West Azarbayjan utilizing life cycle assessment (LCA)," Renewable Energy, Elsevier, vol. 74(C), pages 208-213.
    12. Nemecek, Thomas & Huguenin-Elie, Olivier & Dubois, David & Gaillard, Gérard & Schaller, Britta & Chervet, Andreas, 2011. "Life cycle assessment of Swiss farming systems: II. Extensive and intensive production," Agricultural Systems, Elsevier, vol. 104(3), pages 233-245, March.
    13. Houshyar, Ehsan & Azadi, Hossein & Almassi, Morteza & Sheikh Davoodi, Mohammad Javad & Witlox, Frank, 2012. "Sustainable and efficient energy consumption of corn production in Southwest Iran: Combination of multi-fuzzy and DEA modeling," Energy, Elsevier, vol. 44(1), pages 672-681.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zahra Payandeh & Ahmad Jahanbakhshi & Tarahom Mesri-Gundoshmian & Sean Clark, 2021. "Improving Energy Efficiency of Barley Production Using Joint Data Envelopment Analysis (DEA) and Life Cycle Assessment (LCA): Evaluation of Greenhouse Gas Emissions and Optimization Approach," Sustainability, MDPI, vol. 13(11), pages 1-16, May.
    2. Ali Mohammadi & G. Venkatesh & Samieh Eskandari & Shahin Rafiee, 2022. "Eco-Efficiency Analysis to Improve Environmental Performance of Wheat Production," Agriculture, MDPI, vol. 12(7), pages 1-16, July.
    3. Morteza Zangeneh & Narges Banaeian & Sean Clark, 2021. "Meta-Analysis on Energy-Use Patterns of Cropping Systems in Iran," Sustainability, MDPI, vol. 13(7), pages 1-28, March.
    4. Xiaoxi Yan & Dong Jiang & Jingying Fu & Mengmeng Hao, 2018. "Assessment of Sweet Sorghum-Based Ethanol Potential in China within the Water–Energy–Food Nexus Framework," Sustainability, MDPI, vol. 10(4), pages 1-17, April.
    5. Sara Ilahi & Yongchang Wu & Muhammad Ahsan Ali Raza & Wenshan Wei & Muhammad Imran & Lyankhua Bayasgalankhuu, 2019. "Optimization Approach for Improving Energy Efficiency and Evaluation of Greenhouse Gas Emission of Wheat Crop using Data Envelopment Analysis," Sustainability, MDPI, vol. 11(12), pages 1-16, June.
    6. Guilherme Rosa da Silva & Adam J. Liska & Cimelio Bayer, 2024. "Life Cycle Greenhouse Gas Emissions in Maize No-Till Agroecosystems in Southern Brazil Based on a Long-Term Experiment," Sustainability, MDPI, vol. 16(10), pages 1-14, May.
    7. Li, Shuo & Wang, Shujuan & Shi, Jianglan & Tian, Xiaohong & Wu, Jiechen, 2022. "Economic, energy and environmental performance assessment on wheat production under water-saving cultivation strategies," Energy, Elsevier, vol. 261(PB).
    8. Anna Vatsanidou & Christos Kavalaris & Spyros Fountas & Nikolaos Katsoulas & Theofanis Gemtos, 2020. "A Life Cycle Assessment of Biomass Production from Energy Crops in Crop Rotation Using Different Tillage System," Sustainability, MDPI, vol. 12(17), pages 1-24, August.
    9. Naseri, Hakim & Parashkoohi, Mohammad Gholami & Ranjbar, Iraj & Zamani, Davood Mohammad, 2021. "Energy-economic and life cycle assessment of sugarcane production in different tillage systems," Energy, Elsevier, vol. 217(C).
    10. Ghasemi-Mobtaker, Hassan & Mostashari-Rad, Fatemeh & Saber, Zahra & Chau, Kwok-wing & Nabavi-Pelesaraei, Ashkan, 2020. "Application of photovoltaic system to modify energy use, environmental damages and cumulative exergy demand of two irrigation systems-A case study: Barley production of Iran," Renewable Energy, Elsevier, vol. 160(C), pages 1316-1334.
    11. Nabavi-Pelesaraei, Ashkan & Azadi, Hossein & Van Passel, Steven & Saber, Zahra & Hosseini-Fashami, Fatemeh & Mostashari-Rad, Fatemeh & Ghasemi-Mobtaker, Hassan, 2021. "Prospects of solar systems in production chain of sunflower oil using cold press method with concentrating energy and life cycle assessment," Energy, Elsevier, vol. 223(C).
    12. Hamed Rafiee & Milad Aminizadeh & Elham Mehrparvar Hosseini & Hanane Aghasafari & Ali Mohammadi, 2022. "A Cluster Analysis on the Energy Use Indicators and Carbon Footprint of Irrigated Wheat Cropping Systems," Sustainability, MDPI, vol. 14(7), pages 1-19, March.
    13. Singh, Pritpal & Singh, Gurdeep & Sodhi, G.P.S., 2020. "Energy and carbon footprints of wheat establishment following different rice residue management strategies vis-à-vis conventional tillage coupled with rice residue burning in north-western India," Energy, Elsevier, vol. 200(C).
    14. Vilma Naujokienė & Kristina Lekavičienė & Egidijus Šarauskis & Asta Bendoraitytė, 2022. "Using a Soil Bioregeneration Approach to Reduce Soil Compaction and Financial Costs of Planting Winter Wheat and Rapeseed," Agriculture, MDPI, vol. 12(5), pages 1-13, May.
    15. Ghasemi-Mobtaker, Hassan & Kaab, Ali & Rafiee, Shahin, 2020. "Application of life cycle analysis to assess environmental sustainability of wheat cultivation in the west of Iran," Energy, Elsevier, vol. 193(C).
    16. Bhunia, Snehasish & Karmakar, Subrata & Bhattacharjee, Suvendu & Roy, Kingshuk & Kanthal, Sahely & Pramanick, Mahadev & Baishya, Aniket & Mandal, Biswapati, 2021. "Optimization of energy consumption using data envelopment analysis (DEA) in rice-wheat-green gram cropping system under conservation tillage practices," Energy, Elsevier, vol. 236(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kazemi, Hossein & Bourkheili, Saeid Hassanpour & Kamkar, Behnam & Soltani, Afshin & Gharanjic, Kambiz & Nazari, Noor Mohammad, 2016. "Estimation of greenhouse gas (GHG) emission and energy use efficiency (EUE) analysis in rainfed canola production (case study: Golestan province, Iran)," Energy, Elsevier, vol. 116(P1), pages 694-700.
    2. Houshyar, Ehsan & Azadi, Hossein & Almassi, Morteza & Sheikh Davoodi, Mohammad Javad & Witlox, Frank, 2012. "Sustainable and efficient energy consumption of corn production in Southwest Iran: Combination of multi-fuzzy and DEA modeling," Energy, Elsevier, vol. 44(1), pages 672-681.
    3. Singh, Pritpal & Singh, Gurdeep & Gupta, Alok & Sodhi, Gurjinder Pal Singh, 2023. "Data envelopment analysis based energy optimization for improving energy efficiency in wheat established following rice residue management in rice-wheat cropping system," Energy, Elsevier, vol. 284(C).
    4. Houshyar, Ehsan & Zareifard, Hamid Reza & Grundmann, Philipp & Smith, Pete, 2015. "Determining efficiency of energy input for silage corn production: An econometric approach," Energy, Elsevier, vol. 93(P2), pages 2166-2174.
    5. Bhunia, Snehasish & Karmakar, Subrata & Bhattacharjee, Suvendu & Roy, Kingshuk & Kanthal, Sahely & Pramanick, Mahadev & Baishya, Aniket & Mandal, Biswapati, 2021. "Optimization of energy consumption using data envelopment analysis (DEA) in rice-wheat-green gram cropping system under conservation tillage practices," Energy, Elsevier, vol. 236(C).
    6. Seyyed Ali Noorhosseini & Christos A. Damalas, 2018. "RETRACTED: Environmental Impact of Peanut ( Arachis hypogaea L.) Production under Different Levels of Nitrogen Fertilization," Agriculture, MDPI, vol. 8(7), pages 1, July.
    7. Asgharipour, Mohammad Reza & Mondani, Farzad & Riahinia, Shahram, 2012. "Energy use efficiency and economic analysis of sugar beet production system in Iran: A case study in Khorasan Razavi province," Energy, Elsevier, vol. 44(1), pages 1078-1084.
    8. Barut, Zeliha Bereket & Ertekin, Can & Karaagac, Hasan Ali, 2011. "Tillage effects on energy use for corn silage in Mediterranean Coastal of Turkey," Energy, Elsevier, vol. 36(9), pages 5466-5475.
    9. Khoshnevisan, Benyamin & Rafiee, Shahin & Omid, Mahmoud & Yousefi, Marziye & Movahedi, Mehran, 2013. "Modeling of energy consumption and GHG (greenhouse gas) emissions in wheat production in Esfahan province of Iran using artificial neural networks," Energy, Elsevier, vol. 52(C), pages 333-338.
    10. Tabatabaie, Seyed Mohammad Hossein & Rafiee, Shahin & Keyhani, Alireza & Heidari, Mohammad Davoud, 2013. "Energy use pattern and sensitivity analysis of energy inputs and input costs for pear production in Iran," Renewable Energy, Elsevier, vol. 51(C), pages 7-12.
    11. Khoshnevisan, Benyamin & Rafiee, Shahin & Omid, Mahmoud & Mousazadeh, Hossein, 2013. "Applying data envelopment analysis approach to improve energy efficiency and reduce GHG (greenhouse gas) emission of wheat production," Energy, Elsevier, vol. 58(C), pages 588-593.
    12. Niero, Monia & Ingvordsen, Cathrine H. & Peltonen-Sainio, Pirjo & Jalli, Marja & Lyngkjær, Michael F. & Hauschild, Michael Z. & Jørgensen, Rikke B., 2015. "Eco-efficient production of spring barley in a changed climate: A Life Cycle Assessment including primary data from future climate scenarios," Agricultural Systems, Elsevier, vol. 136(C), pages 46-60.
    13. Elsoragaby, Suha & Yahya, Azmi & Mahadi, Muhammad Razif & Nawi, Nazmi Mat & Mairghany, Modather, 2019. "Energy utilization in major crop cultivation," Energy, Elsevier, vol. 173(C), pages 1285-1303.
    14. Yuan, Shen & Peng, Shaobing, 2017. "Input-output energy analysis of rice production in different crop management practices in central China," Energy, Elsevier, vol. 141(C), pages 1124-1132.
    15. Singh, Pritpal & Singh, Gurdeep & Sodhi, G.P.S., 2019. "Applying DEA optimization approach for energy auditing in wheat cultivation under rice-wheat and cotton-wheat cropping systems in north-western India," Energy, Elsevier, vol. 181(C), pages 18-28.
    16. Muhammad N. Ashraf & Muhammad H. Mahmood & Muhammad Sultan & Redmond R. Shamshiri & Sobhy M. Ibrahim, 2021. "Investigation of Energy Consumption and Associated CO 2 Emissions for Wheat–Rice Crop Rotation Farming," Energies, MDPI, vol. 14(16), pages 1-18, August.
    17. Zahra Payandeh & Ahmad Jahanbakhshi & Tarahom Mesri-Gundoshmian & Sean Clark, 2021. "Improving Energy Efficiency of Barley Production Using Joint Data Envelopment Analysis (DEA) and Life Cycle Assessment (LCA): Evaluation of Greenhouse Gas Emissions and Optimization Approach," Sustainability, MDPI, vol. 13(11), pages 1-16, May.
    18. Taghavifar, Hamid & Mardani, Aref, 2015. "Energy consumption analysis of wheat production in West Azarbayjan utilizing life cycle assessment (LCA)," Renewable Energy, Elsevier, vol. 74(C), pages 208-213.
    19. Pishgar-Komleh, Seyyed Hassan & Keyhani, Alireza & Mostofi-Sarkari, Mohammad Reza & Jafari, Ali, 2012. "Energy and economic analysis of different seed corn harvesting systems in Iran," Energy, Elsevier, vol. 43(1), pages 469-476.
    20. Liang, Long & Lal, Rattan & Ridoutt, Bradley G. & Zhao, Guishen & Du, Zhangliu & Li, Li & Feng, Dangyang & Wang, Liyuan & Peng, Peng & Hang, Sheng & Wu, Wenliang, 2018. "Multi-indicator assessment of a water-saving agricultural engineering project in North Beijing, China," Agricultural Water Management, Elsevier, vol. 200(C), pages 34-46.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:122:y:2017:i:c:p:11-24. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.