IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v135y2015icp57-65.html
   My bibliography  Save this article

The financial implications of converting farmland to state-supported environmental plantings in the Darling Downs region, Queensland

Author

Listed:
  • Maraseni, Tek Narayan
  • Cockfield, Geoff

Abstract

Australia has one of the highest forest clearing rates in the world. Over the past 200 years, it has lost about 40% of total forest cover with consequent environmental problems such as soil and wind erosion, dryland salinity and biodiversity loss. The Australian Government has introduced a scheme to promote mixed species plantings for conservation and carbon sequestration benefits. This study first estimates the carbon sequestration amounts of these plantings using the Australian Government's Reforestation Modelling Tool and rules, and then compares the estimated returns with those from competing land uses in the Darling Downs region of Queensland, Australia. Costs and benefits data for all land uses were collected from different sources and discounted to produce net present values. With a standard discount rate, average carbon and commodity prices based on recent history and a low ($A1000/ha) direct seeding establishment cost, environmental plantings are more profitable than native pasture, grazing oats and forage sorghum land uses, but less profitable than grain sorghum and native pasture. Higher establishment costs would however favour the continuation of conventional agricultural activities, especially given the limited impact of revegetation schemes in Australia. A comparison of a policy of 25 years permanence (as in the Abbott Governments' Direct Action policy) with a policy of 100 years permanence, the 25 year permanence policy delivers 60% of the carbon sequestrated that would be sequestered over 100 years, but when cost components are included and compared with other land uses, it gives similar outcomes. Therefore, to be attractive to landholders, the restoration of native forests in agricultural areas, such as the Darling Downs, will likely require additional incentive payments (for environmental services and co-benefits) and reasonable contractual certainty.

Suggested Citation

  • Maraseni, Tek Narayan & Cockfield, Geoff, 2015. "The financial implications of converting farmland to state-supported environmental plantings in the Darling Downs region, Queensland," Agricultural Systems, Elsevier, vol. 135(C), pages 57-65.
  • Handle: RePEc:eee:agisys:v:135:y:2015:i:c:p:57-65
    DOI: 10.1016/j.agsy.2014.12.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X14001723
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2014.12.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Schneider, Uwe A. & Kumar, Pushpam, 2008. "Greenhouse Gas Mitigation through Agriculture," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 23(1), pages 1-5.
    2. Uwe A. Schneider & Pete Smith, 2008. "Greenhouse Gas Emission Mitigation and Emission Intensities in Agriculture," Working Papers FNU-164, Research unit Sustainability and Global Change, Hamburg University, revised Jul 2008.
    3. Pushpam Kumar & Uwe A. Schneider, 2008. "Greenhouse gas emission mitigation through agriculture," Working Papers FNU-155, Research unit Sustainability and Global Change, Hamburg University, revised Feb 2008.
    4. Venn, Tyron J., 2005. "Financial and economic performance of long-rotation hardwood plantation investments in Queensland, Australia," Forest Policy and Economics, Elsevier, vol. 7(3), pages 437-454, March.
    5. Denys Yemshanov & Daniel W. McKenney & Terry Hatton & Glenn Fox, 2005. "Investment Attractiveness of Afforestation in Canada Inclusive of Carbon Sequestration Benefits," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 53(4), pages 307-323, December.
    6. Hanjra, Munir A. & Qureshi, M. Ejaz, 2010. "Global water crisis and future food security in an era of climate change," Food Policy, Elsevier, vol. 35(5), pages 365-377, October.
    7. Crossman, Neville D. & Connor, Jeffrey D. & Bryan, Brett A. & Summers, David M. & Ginnivan, John, 2010. "Reconfiguring an irrigation landscape to improve provision of ecosystem services," Ecological Economics, Elsevier, vol. 69(5), pages 1031-1042, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bhandari, Shes Kanta & Maraseni, Tek & Timilsina, Yajna Prasad & Parajuli, Rajan, 2021. "Species composition, diversity, and carbon stock in trees outside forests in middle hills of Nepal," Forest Policy and Economics, Elsevier, vol. 125(C).
    2. Wanggi Jaung & Edi Wiraguna & Beni Okarda & Yustina Artati & Chun Sheng Goh & Ramdhoni Syahru & Budi Leksono & Lilik Budi Prasetyo & Soo Min Lee & Himlal Baral, 2018. "Spatial Assessment of Degraded Lands for Biofuel Production in Indonesia," Sustainability, MDPI, vol. 10(12), pages 1-17, December.
    3. Maraseni, Tek Narayan & Son, Hoang Lien & Cockfield, Geoff & Duy, Hung Vu & Nghia, Tran Dai, 2017. "The financial benefits of forest certification: Case studies of acacia growers and a furniture company in Central Vietnam," Land Use Policy, Elsevier, vol. 69(C), pages 56-63.
    4. Fleming, Aysha & Stitzlein, Cara & Jakku, Emma & Fielke, Simon, 2019. "Missed opportunity? Framing actions around co-benefits for carbon mitigation in Australian agriculture," Land Use Policy, Elsevier, vol. 85(C), pages 230-238.
    5. Pandey, Shiva Shankar & Maraseni, Tek Narayan & Reardon-Smith, Kathryn & Cockfield, Geoff, 2017. "Analysing foregone costs of communities and carbon benefits in small scale community based forestry practice in Nepal," Land Use Policy, Elsevier, vol. 69(C), pages 160-166.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hari Wahyu Wijayanto & Kai-An Lo & Hery Toiba & Moh Shadiqur Rahman, 2022. "Does Agroforestry Adoption Affect Subjective Well-Being? Empirical Evidence from Smallholder Farmers in East Java, Indonesia," Sustainability, MDPI, vol. 14(16), pages 1-10, August.
    2. Zhen, Wei & Qin, Quande & Wei, Yi-Ming, 2017. "Spatio-temporal patterns of energy consumption-related GHG emissions in China's crop production systems," Energy Policy, Elsevier, vol. 104(C), pages 274-284.
    3. Huarui Gong & Jing Li & Zhen Liu & Yitao Zhang & Ruixing Hou & Zhu Ouyang, 2022. "Mitigated Greenhouse Gas Emissions in Cropping Systems by Organic Fertilizer and Tillage Management," Land, MDPI, vol. 11(7), pages 1-18, July.
    4. Oliver Lazarus & Sonali McDermid & Jennifer Jacquet, 2021. "The climate responsibilities of industrial meat and dairy producers," Climatic Change, Springer, vol. 165(1), pages 1-21, March.
    5. David Bryngelsson & Fredrik Hedenus & Daniel J. A. Johansson & Christian Azar & Stefan Wirsenius, 2017. "How Do Dietary Choices Influence the Energy-System Cost of Stabilizing the Climate?," Energies, MDPI, vol. 10(2), pages 1-13, February.
    6. Soy-Massoni, Emma & Langemeyer, Johannes & Varga, Diego & Sáez, Marc & Pintó, Josep, 2016. "The importance of ecosystem services in coastal agricultural landscapes: Case study from the Costa Brava, Catalonia," Ecosystem Services, Elsevier, vol. 17(C), pages 43-52.
    7. Telmo José Mendes & Diego Silva Siqueira & Eduardo Barretto Figueiredo & Ricardo de Oliveira Bordonal & Mara Regina Moitinho & José Marques Júnior & Newton La Scala Jr., 2021. "Soil carbon stock estimations: methods and a case study of the Maranhão State, Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16410-16427, November.
    8. Ancuta Isbasoiu & Pierre-Alain Jayet & Stéphane De Cara, 2021. "Increasing food production and mitigating agricultural greenhouse gas emissions in the European Union: impacts of carbon pricing and calorie production targeting," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(2), pages 409-440, April.
    9. Amanda Silva‐Parra & Juan Manuel Trujillo‐González & Eric C. Brevik, 2021. "Greenhouse gas balance and mitigation potential of agricultural systems in Colombia: A systematic analysis," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(3), pages 554-572, June.
    10. Chen, Jiandong & Cheng, Shulei & Song, Malin, 2018. "Changes in energy-related carbon dioxide emissions of the agricultural sector in China from 2005 to 2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 748-761.
    11. Wang, Guangshuai & Liang, Yueping & Zhang, Qian & Jha, Shiva K. & Gao, Yang & Shen, Xiaojun & Sun, Jingsheng & Duan, Aiwang, 2016. "Mitigated CH4 and N2O emissions and improved irrigation water use efficiency in winter wheat field with surface drip irrigation in the North China Plain," Agricultural Water Management, Elsevier, vol. 163(C), pages 403-407.
    12. Saw Min & Martin Rulík, 2020. "Comparison of Carbon Dioxide (CO 2 ) Fluxes between Conventional and Conserved Irrigated Rice Paddy Fields in Myanmar," Sustainability, MDPI, vol. 12(14), pages 1-19, July.
    13. Connor, Melanie & de Guia, Annalyn H. & Quilloy, Reianne & Van Nguyen, Hung & Gummert, Martin & Sander, Bjoern Ole, 2020. "When climate change is not psychologically distant – Factors influencing the acceptance of sustainable farming practices in the Mekong river Delta of Vietnam," World Development Perspectives, Elsevier, vol. 18(C).
    14. Franco-Luesma, Samuel & Álvaro-Fuentes, Jorge & Plaza-Bonilla, Daniel & Arrúe, José Luis & Cantero-Martínez, Carlos & Cavero, José, 2019. "Influence of irrigation time and frequency on greenhouse gas emissions in a solid-set sprinkler-irrigated maize under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 221(C), pages 303-311.
    15. Anna Kocira & Mariola Staniak & Marzena Tomaszewska & Rafał Kornas & Jacek Cymerman & Katarzyna Panasiewicz & Halina Lipińska, 2020. "Legume Cover Crops as One of the Elements of Strategic Weed Management and Soil Quality Improvement. A Review," Agriculture, MDPI, vol. 10(9), pages 1-41, September.
    16. Kerstin Jantke & Martina J. Hartmann & Livia Rasche & Benjamin Blanz & Uwe A. Schneider, 2020. "Agricultural Greenhouse Gas Emissions: Knowledge and Positions of German Farmers," Land, MDPI, vol. 9(5), pages 1-13, April.
    17. Song, Guobao & Song, Jie & Zhang, Shushen, 2016. "Modelling the policies of optimal straw use for maximum mitigation of climate change in China from a system perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 789-810.
    18. Kathrin Hasler & Hans-Werner Olfs & Onno Omta & Stefanie Bröring, 2016. "Drivers for the Adoption of Eco-Innovations in the German Fertilizer Supply Chain," Sustainability, MDPI, vol. 8(8), pages 1-18, July.
    19. Miomir Jovanović & Ljiljana Kašćelan & Aleksandra Despotović & Vladimir Kašćelan, 2015. "The Impact of Agro-Economic Factors on GHG Emissions: Evidence from European Developing and Advanced Economies," Sustainability, MDPI, vol. 7(12), pages 1-21, December.
    20. Zhao, Rongqin & Liu, Ying & Tian, Mengmeng & Ding, Minglei & Cao, Lianhai & Zhang, Zhanping & Chuai, Xiaowei & Xiao, Liangang & Yao, Lunguang, 2018. "Impacts of water and land resources exploitation on agricultural carbon emissions: The water-land-energy-carbon nexus," Land Use Policy, Elsevier, vol. 72(C), pages 480-492.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:135:y:2015:i:c:p:57-65. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.