IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v114y2013icp15-31.html
   My bibliography  Save this article

Climate change impacts and adaptation scope for agriculture indicated by agro-meteorological metrics

Author

Listed:
  • Rivington, M.
  • Matthews, K.B.
  • Buchan, K.
  • Miller, D.G.
  • Bellocchi, G.
  • Russell, G.

Abstract

Agro-meteorological metrics are indicators of weather determined environmental conditions on which agricultural management decisions are made. Metrics derived from an estimated future climate provide an opportunity to characterise the impacts of climate change on a wide range of agricultural systems, land use practices and ecosystem services. Such indications are vital for determining how changes in the biophysical environment can lead to land management and policy adaptations to achieve multiple objectives of financial viability, food security, biodiversity conservation and environmental sustainability. They provide valuable links between probable management adaptation responses and capacity for mitigating greenhouse gas emissions. However, there are large uncertainties associated with projected future climates, including the climate models’ spatial scale of representation and those at which agro-meteorological metrics are applied. This paper describes the estimation of agro-meteorological metrics derived from observed weather and downscaled Regional Climate Model projection data for 12 sites in Scotland. Results show that projected changes to seasonal rainfall distribution, growing season length, soil moisture deficits and accessibility will be substantially different from the present climate. Fundamentally, the metrics indicate a substantial shift in land management requirements and potential need for substantial changes in agricultural systems and land use that will have implications across a wide range of research disciplines.

Suggested Citation

  • Rivington, M. & Matthews, K.B. & Buchan, K. & Miller, D.G. & Bellocchi, G. & Russell, G., 2013. "Climate change impacts and adaptation scope for agriculture indicated by agro-meteorological metrics," Agricultural Systems, Elsevier, vol. 114(C), pages 15-31.
  • Handle: RePEc:eee:agisys:v:114:y:2013:i:c:p:15-31
    DOI: 10.1016/j.agsy.2012.08.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X12001254
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2012.08.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James M. Murphy & David M. H. Sexton & David N. Barnett & Gareth S. Jones & Mark J. Webb & Matthew Collins & David A. Stainforth, 2004. "Quantification of modelling uncertainties in a large ensemble of climate change simulations," Nature, Nature, vol. 430(7001), pages 768-772, August.
    2. Rivington, M. & Matthews, K.B. & Bellocchi, G. & Buchan, K., 2006. "Evaluating uncertainty introduced to process-based simulation model estimates by alternative sources of meteorological data," Agricultural Systems, Elsevier, vol. 88(2-3), pages 451-471, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Morgese, S. & Casale, F. & Movedi, E. & Confalonieri, R. & Bocchiola, D., 2024. "Modelling the effects of potential climate change on the dynamics of multi-species mountain pastures: A case study in Gran Paradiso National Park, Italy," Agricultural Systems, Elsevier, vol. 217(C).
    2. Islam, AFM Tariqul & Islam, AKM Saiful & Islam, GM Tarekul & Bala, Sujit Kumar & Salehin, Mashfiqus & Choudhury, Apurba Kanti & Dey, Nepal C. & Hossain, Akbar, 2022. "Adaptation strategies to increase water productivity of wheat under changing climate," Agricultural Water Management, Elsevier, vol. 264(C).
    3. Marion Sautier & Roger Martin-Clouaire & Robert Faivre & Michel Duru, 2013. "Assessing climatic exposure of grassland-based livestock systems with seasonal-scale indicators," Climatic Change, Springer, vol. 120(1), pages 341-355, September.
    4. Yakubu Abdul-Salam & Melf-Hinrich Ehlers & Jelte Harnmeijer, 2017. "Anaerobic Digestion of Feedstock Grown on Marginal Land: Break-Even Electricity Prices," Energies, MDPI, vol. 10(9), pages 1-21, September.
    5. A. Harding & M. Rivington & M. Mineter & S. Tett, 2015. "“Agro-meteorological indices and climate model uncertainty over the UK”," Climatic Change, Springer, vol. 128(1), pages 113-126, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Jinfu & Liu, Yang & Liu, Jiming, 2023. "Chaotic behavior learning via information tracking," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    2. Garcia y Garcia, Axel & Guerra, Larry C. & Hoogenboom, Gerrit, 2008. "Impact of generated solar radiation on simulated crop growth and yield," Ecological Modelling, Elsevier, vol. 210(3), pages 312-326.
    3. Simon Gosling & Glenn McGregor & Jason Lowe, 2012. "The benefits of quantifying climate model uncertainty in climate change impacts assessment: an example with heat-related mortality change estimates," Climatic Change, Springer, vol. 112(2), pages 217-231, May.
    4. Lingcheng Li & Liping Zhang & Jun Xia & Christopher Gippel & Renchao Wang & Sidong Zeng, 2015. "Implications of Modelled Climate and Land Cover Changes on Runoff in the Middle Route of the South to North Water Transfer Project in China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2563-2579, June.
    5. Getachew Tegegne & Assefa M. Melesse, 2020. "Multimodel Ensemble Projection of Hydro-climatic Extremes for Climate Change Impact Assessment on Water Resources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 3019-3035, July.
    6. A. Kay & R. Jones, 2012. "Comparison of the use of alternative UKCP09 products for modelling the impacts of climate change on flood frequency," Climatic Change, Springer, vol. 114(2), pages 211-230, September.
    7. Hu, Xinyu & Zhao, Jinfeng & Sun, Shikun & Jia, Chengru & Zhang, Fuyao & Ma, Yizhe & Wang, Kaixuan & Wang, Yubao, 2023. "Evaluation of the temporal reconstruction methods for MODIS-based continuous daily actual evapotranspiration estimation," Agricultural Water Management, Elsevier, vol. 275(C).
    8. Simon Gosling & Jason Lowe & Glenn McGregor & Mark Pelling & Bruce Malamud, 2009. "Associations between elevated atmospheric temperature and human mortality: a critical review of the literature," Climatic Change, Springer, vol. 92(3), pages 299-341, February.
    9. baptiste perrissin fabert & Etienne Espagne & Antonin Pottier & Franck Nadaus, 2012. "Disentangling the Stern/Nordhaus controversy. Why and how do beliefs and modelling choices matter?," EcoMod2012 4270, EcoMod.
    10. Ludovic Gaudard & Jeannette Gabbi & Andreas Bauder & Franco Romerio, 2016. "Long-term Uncertainty of Hydropower Revenue Due to Climate Change and Electricity Prices," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1325-1343, March.
    11. Wei, Yi-Ming & Mi, Zhi-Fu & Huang, Zhimin, 2015. "Climate policy modeling: An online SCI-E and SSCI based literature review," Omega, Elsevier, vol. 57(PA), pages 70-84.
    12. A. Lopez & E. Suckling & F. Otto & A. Lorenz & D. Rowlands & M. Allen, 2015. "Towards a typology for constrained climate model forecasts," Climatic Change, Springer, vol. 132(1), pages 15-29, September.
    13. Andrew J. Wiltshire & Gillian Kay & Jemma L. Gornall & Richard A. Betts, 2013. "The Impact of Climate, CO 2 and Population on Regional Food and Water Resources in the 2050s," Sustainability, MDPI, vol. 5(5), pages 1-23, May.
    14. Johannes Emmerling, 2018. "Sharing Of Climate Risks Across World Regions," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 9(03), pages 1-19, August.
    15. Lopes, Francis M. & Conceição, Ricardo & Silva, Hugo G. & Salgado, Rui & Collares-Pereira, Manuel, 2021. "Improved ECMWF forecasts of direct normal irradiance: A tool for better operational strategies in concentrating solar power plants," Renewable Energy, Elsevier, vol. 163(C), pages 755-771.
    16. Jürgen Scheffran, 2008. "Adaptive management of energy transitions in long-term climate change," Computational Management Science, Springer, vol. 5(3), pages 259-286, May.
    17. Tarsia, Romano, 2024. "Heterogeneous effects of weather shocks on firm economic performance," LSE Research Online Documents on Economics 124251, London School of Economics and Political Science, LSE Library.
    18. Wang, Ning & Shen, Ruifang & Wen, Zongguo & De Clercq, Djavan, 2019. "Life cycle energy efficiency evaluation for coal development and utilization," Energy, Elsevier, vol. 179(C), pages 1-11.
    19. Rick Baker & Andrew Barker & Alan Johnston & Michael Kohlhaas, 2008. "The Stern Review: an assessment of its methodology," Staff Working Papers 0801, Productivity Commission, Government of Australia.
    20. Johannes Emmerling & Massimo Tavoni, 2018. "Climate Engineering and Abatement: A ‘flat’ Relationship Under Uncertainty," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 69(2), pages 395-415, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:114:y:2013:i:c:p:15-31. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.