IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v100y2009i1-3p11-21.html
   My bibliography  Save this article

Maize ethanol feedstock production and net energy value as affected by climate variability and crop management practices

Author

Listed:
  • Persson, Tomas
  • Garcia y Garcia, Axel
  • Paz, Joel
  • Jones, Jim
  • Hoogenboom, Gerrit

Abstract

Ethanol from various plant resources, especially maize, is increasingly being used as a substitute for fossil fuels. The production potential of ethanol from maize varies with weather and climatic conditions and crop management practices. The merits and prospects of ethanol production have been evaluated based on its impact on greenhouse gas emissions, economic viability and national energy security. The net energy value (NEV), i.e. the output energy after all non-renewable energy inputs have been accounted for, is a measure of energy gain. At the same time, the NEV can be an indicator for the long-term sustainability of bio-ethanol production, regardless of other conditions e.g. climate change scenarios, global trade restrictions, or local variability in natural resources such as water availability. Crop management practices directly affect the NEV of ethanol. Moreover, both crop management practices and climate variability affect the NEV through the grain yield. The objective of this study was to assess the impact of crop management practices and climate variability on grain yield of maize for ethanol production and ethanol NEV for conditions that represent the southeastern USA. Maize grain yield was simulated with the dynamic crop growth model CSM-CERES-Maize and ethanol NEV was calculated using the simulated yield levels and crop management practices. The simulations were conducted for conditions representing Mitchell County, Georgia, USA, using weather data from 1939 to 2006 and local soil profile information. The impact of irrigation, nitrogen fertilizer, planting date and El Niño Southern Oscillation (ENSO) phases were determined for the maize cultivars DeKalb DKC 61-72 (RR2), Pioneer 31D58 and Pioneer 31G98. Crop management practices and ENSO phase had a significant impact on ethanol feedstock production and NEV. The NEV of ethanol produced from irrigated maize was more than two times higher and varied less than the NEV of ethanol from rainfed maize. NEV of ethanol produced from maize grown during La Niña years was significantly higher than maize grown during El Niño years, both under rainfed and irrigated conditions. This study showed the importance of crop management practices and climate variability on ethanol feedstock productivity and long-term energy sustainability as assessed by the NEV. We discuss methods of implementing the findings of this study in practical farming e.g. through market mechanisms and governmental initiatives.

Suggested Citation

  • Persson, Tomas & Garcia y Garcia, Axel & Paz, Joel & Jones, Jim & Hoogenboom, Gerrit, 2009. "Maize ethanol feedstock production and net energy value as affected by climate variability and crop management practices," Agricultural Systems, Elsevier, vol. 100(1-3), pages 11-21, April.
  • Handle: RePEc:eee:agisys:v:100:y:2009:i:1-3:p:11-21
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308-521X(08)00131-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ryan, Lisa & Convery, Frank & Ferreira, Susana, 2006. "Stimulating the use of biofuels in the European Union: Implications for climate change policy," Energy Policy, Elsevier, vol. 34(17), pages 3184-3194, November.
    2. Garcia y Garcia, Axel & Guerra, Larry C. & Hoogenboom, Gerrit, 2008. "Impact of generated solar radiation on simulated crop growth and yield," Ecological Modelling, Elsevier, vol. 210(3), pages 312-326.
    3. Tad Patzek & S.-M. Anti & R. Campos & K. ha & J. Lee & B. Li & J. Padnick & S.-A. Yee, 2005. "Ethanol From Corn: Clean Renewable Fuel for the Future, or Drain on Our Resources and Pockets?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 7(3), pages 319-336, September.
    4. Swanton, Clarence J. & Murphy, Stephen D. & Hume, David J. & Clements, David R., 1996. "Recent improvements in the energy efficiency of agriculture: Case studies from Ontario, Canada," Agricultural Systems, Elsevier, vol. 52(4), pages 399-418, December.
    5. מחקר - ביטוח לאומי, 2006. "Summary for 2005," Working Papers 29, National Insurance Institute of Israel.
    6. Shapouri, Hosein & Duffield, James A. & Wang, Michael Q., 2002. "The Energy Balance of Corn Ethanol: An Update," Agricultural Economic Reports 34075, United States Department of Agriculture, Economic Research Service.
    7. John Sheehan & Andy Aden & Keith Paustian & Kendrick Killian & John Brenner & Marie Walsh & Richard Nelson, 2003. "Energy and Environmental Aspects of Using Corn Stover for Fuel Ethanol," Journal of Industrial Ecology, Yale University, vol. 7(3‐4), pages 117-146, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ojeda, Jonathan J. & Volenec, Jeffrey J. & Brouder, Sylvie M. & Caviglia, Octavio P. & Agnusdei, Mónica G., 2018. "Modelling stover and grain yields, and subsurface artificial drainage from long-term corn rotations using APSIM," Agricultural Water Management, Elsevier, vol. 195(C), pages 154-171.
    2. Sushil R. Poudel & Md Abdul Quddus & Mohammad Marufuzzaman & Linkan Bian & Reuben F. Burch V, 2019. "Managing congestion in a multi-modal transportation network under biomass supply uncertainty," Annals of Operations Research, Springer, vol. 273(1), pages 739-781, February.
    3. Li, Lin & Sun, Zeyi & Yao, Xufeng & Wang, Donghai, 2016. "Optimal production scheduling for energy efficiency improvement in biofuel feedstock preprocessing considering work-in-process particle separation," Energy, Elsevier, vol. 96(C), pages 474-481.
    4. Chen, Chien-Wei & Fan, Yueyue, 2012. "Bioethanol supply chain system planning under supply and demand uncertainties," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 150-164.
    5. Eckert, C.T. & Frigo, E.P. & Albrecht, L.P. & Albrecht, A.J.P. & Christ, D. & Santos, W.G. & Berkembrock, E. & Egewarth, V.A., 2018. "Maize ethanol production in Brazil: Characteristics and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3907-3912.
    6. Guo, Changqiang & Hu, Hao & Wang, Shaowen & Rodriguez, Luis F. & Ting, K.C. & Lin, Tao, 2022. "Multiperiod stochastic programming for biomass supply chain design under spatiotemporal variability of feedstock supply," Renewable Energy, Elsevier, vol. 186(C), pages 378-393.
    7. Salazar, M.R. & Hook, J.E. & Garcia y Garcia, A. & Paz, J.O. & Chaves, B. & Hoogenboom, G., 2012. "Estimating irrigation water use for maize in the Southeastern USA: A modeling approach," Agricultural Water Management, Elsevier, vol. 107(C), pages 104-111.
    8. Jane Ebinger & Walter Vergara, 2011. "Climate Impacts on Energy Systems : Key Issues for Energy Sector Adaptation," World Bank Publications - Books, The World Bank Group, number 2271.
    9. Schaeffer, Roberto & Szklo, Alexandre Salem & Pereira de Lucena, André Frossard & Moreira Cesar Borba, Bruno Soares & Pupo Nogueira, Larissa Pinheiro & Fleming, Fernanda Pereira & Troccoli, Alberto & , 2012. "Energy sector vulnerability to climate change: A review," Energy, Elsevier, vol. 38(1), pages 1-12.
    10. Prem Woli & Joel Paz, 2014. "Crop Management Effects on the Energy and Carbon Balances of Maize Stover-Based Ethanol Production," Energies, MDPI, vol. 8(1), pages 1-26, December.
    11. Poudel, Sushil Raj & Marufuzzaman, Mohammad & Bian, Linkan, 2016. "A hybrid decomposition algorithm for designing a multi-modal transportation network under biomass supply uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 94(C), pages 1-25.
    12. Anita Konieczna & Kamil Roman & Monika Roman & Damian Śliwiński & Michał Roman, 2020. "Energy Efficiency of Maize Production Technology: Evidence from Polish Farms," Energies, MDPI, vol. 14(1), pages 1-20, December.
    13. Dong Hee Suh & Charles B. Moss, 2016. "Dynamic interfeed substitution: implications for incorporating ethanol byproducts into feedlot rations," Applied Economics, Taylor & Francis Journals, vol. 48(20), pages 1893-1901, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eaves, James & Eaves, Stephen, 2007. "Renewable corn-ethanol and energy security," Energy Policy, Elsevier, vol. 35(11), pages 5958-5963, November.
    2. Collotta, M. & Champagne, P. & Tomasoni, G. & Alberti, M. & Busi, L. & Mabee, W., 2019. "Critical indicators of sustainability for biofuels: An analysis through a life cycle sustainabilty assessment perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    3. Kirby, Natasha & Davison, Matt, 2010. "Using a spark-spread valuation to investigate the impact of corn-gasoline correlation on ethanol plant valuation," Energy Economics, Elsevier, vol. 32(6), pages 1221-1227, November.
    4. Charles, Michael B. & Ryan, Rachel & Ryan, Neal & Oloruntoba, Richard, 2007. "Public policy and biofuels: The way forward?," Energy Policy, Elsevier, vol. 35(11), pages 5737-5746, November.
    5. Parajuli, Ranjan & Dalgaard, Tommy & Jørgensen, Uffe & Adamsen, Anders Peter S. & Knudsen, Marie Trydeman & Birkved, Morten & Gylling, Morten & Schjørring, Jan Kofod, 2015. "Biorefining in the prevailing energy and materials crisis: a review of sustainable pathways for biorefinery value chains and sustainability assessment methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 244-263.
    6. Daniel Bergquist & Otávio Cavalett & Torbjörn Rydberg, 2012. "Participatory emergy synthesis of integrated food and biofuel production: a case study from Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 14(2), pages 167-182, April.
    7. Šantek, Božidar & Gwehenberger, Gernot & Šantek, Mirela Ivančić & Narodoslawsky, Michael & Horvat, Predrag, 2010. "Evaluation of energy demand and the sustainability of different bioethanol production processes from sugar beet," Resources, Conservation & Recycling, Elsevier, vol. 54(11), pages 872-877.
    8. Productivity Commission, 2006. "Review of Price Regulation of Airports Services," Inquiry Reports, Productivity Commission, Government of Australia, number 40.
    9. MacCarty, Nordica A. & Bryden, Kenneth Mark, 2016. "An integrated systems model for energy services in rural developing communities," Energy, Elsevier, vol. 113(C), pages 536-557.
    10. Beghin, John C. & Jensen, Helen H., 2008. "Farm policies and added sugars in US diets," Food Policy, Elsevier, vol. 33(6), pages 480-488, December.
    11. Burnes, Ellen & Wichelns, Dennis & Hagen, John W., 2005. "Economic and policy implications of public support for ethanol production in California's San Joaquin Valley," Energy Policy, Elsevier, vol. 33(9), pages 1155-1167, June.
    12. Bhalotra, Sonia & Clarke, Damian & Mühlrad, Hanna & Palme, Mårten, 2021. "Health and Labor Market Impacts of Twin Birth : Evidence from a Swedish IVF Policy Mandate," The Warwick Economics Research Paper Series (TWERPS) 1391, University of Warwick, Department of Economics.
    13. Danilo Arcentales-Bastidas & Carla Silva & Angel D. Ramirez, 2022. "The Environmental Profile of Ethanol Derived from Sugarcane in Ecuador: A Life Cycle Assessment Including the Effect of Cogeneration of Electricity in a Sugar Industrial Complex," Energies, MDPI, vol. 15(15), pages 1-24, July.
    14. Ryan, Lisa & Convery, Frank & Ferreira, Susana, 2006. "Stimulating the use of biofuels in the European Union: Implications for climate change policy," Energy Policy, Elsevier, vol. 34(17), pages 3184-3194, November.
    15. N. N., 2005. "60th Euroconstruct Conference: The Prospects for the European Construction Market 2006-2008. Summary Report," WIFO Studies, WIFO, number 25838.
    16. Lei Jin & Nicholas Chrisatakis, 2009. "Investigating the mechanism of marital mortality reduction: The transition to widowhood and quality of health care," Demography, Springer;Population Association of America (PAA), vol. 46(3), pages 605-625, August.
    17. Ankit Gupta & Hemant Bherwani & Sneha Gautam & Saima Anjum & Kavya Musugu & Narendra Kumar & Avneesh Anshul & Rakesh Kumar, 2021. "Air pollution aggravating COVID-19 lethality? Exploration in Asian cities using statistical models," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 6408-6417, April.
    18. Bureau for Food and Agricultural Policy, 2015. "The South African Sunflower Complex," BFAP Reports 279776, Bureau for Food and Agricultural Policy (BFAP), BFAP Reports.
    19. Ellen Bouchery & Rebecca Morris & Jasmine Little, "undated". "Examining Substance Use Disorder Treatment Demand and Provider Capacity in a Changing Health Care System: Initial Findings Report," Mathematica Policy Research Reports b0d83ca544284ee7a053b2788, Mathematica Policy Research.
    20. Sun-Jin Yun, 2012. "Nuclear power for climate mitigation? Contesting frames in Korean newspapers," Asia Europe Journal, Springer, vol. 10(1), pages 57-73, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:100:y:2009:i:1-3:p:11-21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.