IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v43y2015icp244-263.html
   My bibliography  Save this article

Biorefining in the prevailing energy and materials crisis: a review of sustainable pathways for biorefinery value chains and sustainability assessment methodologies

Author

Listed:
  • Parajuli, Ranjan
  • Dalgaard, Tommy
  • Jørgensen, Uffe
  • Adamsen, Anders Peter S.
  • Knudsen, Marie Trydeman
  • Birkved, Morten
  • Gylling, Morten
  • Schjørring, Jan Kofod

Abstract

The aim of the current paper is to discuss the sustainability aspect of biorefinery systems with focus on biomass supply chains, processing of biomass feedstocks in biorefinery platforms and sustainability assessment methodologies. From the stand point of sustainability, it is important to optimize the agricultural production system and minimize the related environmental impacts at the farming system level. These impacts are primarily related to agri-chemical inputs and the related undesired environmental emissions and to the repercussions from biomass production. At the same time, the biorefineries need a year-round supply of biomass and about 40–60% of the total operating cost of a typical biorefinery is related to the feedstocks chosen, and thus highlights on the careful prioritization of feedstocks mainly based on their economic and environmental loadings. Regarding the processing in biorefinery platforms, chemical composition of biomasses is important. Biomasses with higher concentrations of cellulose and hemicelluloses compared to lignin are preferred for bioethanol production in the lignocellulosic biorefinery, since the biodegradability of cellulose is higher than lignin. A green biorefinery platform enables the extraction of protein from grasses, producing an important alternative to importing protein sources for food products and animal feed, while also allowing processing of residues to deliver bioethanol. Currently, there are several approaches to integrate biorefinery platforms, which are aimed to enhance their economic and environmental sustainability. Regarding sustainability assessment, the complexities related to the material flows in a biorefinery and the delivery of alternative biobased products means dealing with multiple indicators in the decision-making process to enable comparisons of alternatives. Life Cycle Assessment is regarded as one of the most relevant tools to assess the environmental hotspots in the biomass supply chains, at processing stages and also to support in the prioritization of any specific biobased products and the alternatives delivered from biorefineries.

Suggested Citation

  • Parajuli, Ranjan & Dalgaard, Tommy & Jørgensen, Uffe & Adamsen, Anders Peter S. & Knudsen, Marie Trydeman & Birkved, Morten & Gylling, Morten & Schjørring, Jan Kofod, 2015. "Biorefining in the prevailing energy and materials crisis: a review of sustainable pathways for biorefinery value chains and sustainability assessment methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 244-263.
  • Handle: RePEc:eee:rensus:v:43:y:2015:i:c:p:244-263
    DOI: 10.1016/j.rser.2014.11.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032114009721
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2014.11.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Edwards, Ward & Barron, F. Hutton, 1994. "SMARTS and SMARTER: Improved Simple Methods for Multiattribute Utility Measurement," Organizational Behavior and Human Decision Processes, Elsevier, vol. 60(3), pages 306-325, December.
    2. Renn, Ortwin, 2003. "Social assessment of waste energy utilization scenarios," Energy, Elsevier, vol. 28(13), pages 1345-1357.
    3. Cherubini, Francesco & Ulgiati, Sergio, 2010. "Crop residues as raw materials for biorefinery systems - A LCA case study," Applied Energy, Elsevier, vol. 87(1), pages 47-57, January.
    4. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa & Zhao, Jun-Hong, 2009. "Review on multi-criteria decision analysis aid in sustainable energy decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2263-2278, December.
    5. Gallego Carrera, Diana & Mack, Alexander, 2010. "Sustainability assessment of energy technologies via social indicators: Results of a survey among European energy experts," Energy Policy, Elsevier, vol. 38(2), pages 1030-1039, February.
    6. Seungdo Kim & Bruce E. Dale, 2003. "Cumulative Energy and Global Warming Impact from the Production of Biomass for Biobased Products," Journal of Industrial Ecology, Yale University, vol. 7(3‐4), pages 147-162, July.
    7. Handfield, Robert & Walton, Steven V. & Sroufe, Robert & Melnyk, Steven A., 2002. "Applying environmental criteria to supplier assessment: A study in the application of the Analytical Hierarchy Process," European Journal of Operational Research, Elsevier, vol. 141(1), pages 70-87, August.
    8. Chatzimouratidis, Athanasios I. & Pilavachi, Petros A., 2009. "Sensitivity analysis of technological, economic and sustainability evaluation of power plants using the analytic hierarchy process," Energy Policy, Elsevier, vol. 37(3), pages 788-798, March.
    9. Parajuli, Ranjan, 2012. "Looking into the Danish energy system: Lesson to be learned by other communities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2191-2199.
    10. Nguyen, Thu Lan T. & Hermansen, John E. & Mogensen, Lisbeth, 2013. "Environmental performance of crop residues as an energy source for electricity production: The case of wheat straw in Denmark," Applied Energy, Elsevier, vol. 104(C), pages 633-641.
    11. Haralambopoulos, D.A. & Polatidis, H., 2003. "Renewable energy projects: structuring a multi-criteria group decision-making framework," Renewable Energy, Elsevier, vol. 28(6), pages 961-973.
    12. Yaghoobi, M.A. & Tamiz, M., 2007. "A method for solving fuzzy goal programming problems based on MINMAX approach," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1580-1590, March.
    13. Emma Marris, 2006. "Drink the best and drive the rest," Nature, Nature, vol. 444(7120), pages 670-672, December.
    14. Bebbington, Jan & Brown, Judy & Frame, Bob, 2007. "Accounting technologies and sustainability assessment models," Ecological Economics, Elsevier, vol. 61(2-3), pages 224-236, March.
    15. Doukas, Haris Ch. & Andreas, Botsikas M. & Psarras, John E., 2007. "Multi-criteria decision aid for the formulation of sustainable technological energy priorities using linguistic variables," European Journal of Operational Research, Elsevier, vol. 182(2), pages 844-855, October.
    16. Mamlook, Rustom & Akash, Bilal A & Mohsen, Mousa S, 2001. "A neuro-fuzzy program approach for evaluating electric power generation systems," Energy, Elsevier, vol. 26(6), pages 619-632.
    17. Jovanović, Marina & Afgan, Naim & Radovanović, Predrag & Stevanović, Vladimir, 2009. "Sustainable development of the Belgrade energy system," Energy, Elsevier, vol. 34(5), pages 532-539.
    18. Kitzes, Justin & Galli, Alessandro & Bagliani, Marco & Barrett, John & Dige, Gorm & Ede, Sharon & Erb, Karlheinz & Giljum, Stefan & Haberl, Helmut & Hails, Chris & Jolia-Ferrier, Laurent & Jungwirth, , 2009. "A research agenda for improving national Ecological Footprint accounts," Ecological Economics, Elsevier, vol. 68(7), pages 1991-2007, May.
    19. Hoekman, S. Kent, 2009. "Biofuels in the U.S. – Challenges and Opportunities," Renewable Energy, Elsevier, vol. 34(1), pages 14-22.
    20. Hepbasli, Arif, 2008. "A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(3), pages 593-661, April.
    21. Panoutsou, Calliope, 2008. "Bioenergy in Greece: Policies, diffusion framework and stakeholder interactions," Energy Policy, Elsevier, vol. 36(10), pages 3674-3685, October.
    22. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa & Shi, Guo-Hua & Zhang, Xu-Tao, 2008. "A fuzzy multi-criteria decision-making model for trigeneration system," Energy Policy, Elsevier, vol. 36(10), pages 3823-3832, October.
    23. Afgan, Naim H. & Carvalho, Maria G., 2002. "Multi-criteria assessment of new and renewable energy power plants," Energy, Elsevier, vol. 27(8), pages 739-755.
    24. Shapouri, Hosein & Duffield, James A. & Wang, Michael Q., 2002. "The Energy Balance of Corn Ethanol: An Update," Agricultural Economic Reports 34075, United States Department of Agriculture, Economic Research Service.
    25. Ghatak, Himadri Roy, 2011. "Biorefineries from the perspective of sustainability: Feedstocks, products, and processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4042-4052.
    26. Borrion, Aiduan Li & McManus, Marcelle C. & Hammond, Geoffrey P., 2012. "Environmental life cycle assessment of lignocellulosic conversion to ethanol: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4638-4650.
    27. Elghali, Lucia & Clift, Roland & Sinclair, Philip & Panoutsou, Calliope & Bauen, Ausilio, 2007. "Developing a sustainability framework for the assessment of bioenergy systems," Energy Policy, Elsevier, vol. 35(12), pages 6075-6083, December.
    28. John Sheehan & Andy Aden & Keith Paustian & Kendrick Killian & John Brenner & Marie Walsh & Richard Nelson, 2003. "Energy and Environmental Aspects of Using Corn Stover for Fuel Ethanol," Journal of Industrial Ecology, Yale University, vol. 7(3‐4), pages 117-146, July.
    29. Behzadian, Majid & Kazemzadeh, R.B. & Albadvi, A. & Aghdasi, M., 2010. "PROMETHEE: A comprehensive literature review on methodologies and applications," European Journal of Operational Research, Elsevier, vol. 200(1), pages 198-215, January.
    30. Quintero, J.A. & Montoya, M.I. & Sánchez, O.J. & Giraldo, O.H. & Cardona, C.A., 2008. "Fuel ethanol production from sugarcane and corn: Comparative analysis for a Colombian case," Energy, Elsevier, vol. 33(3), pages 385-399.
    31. Lund, H. & Mathiesen, B.V., 2009. "Energy system analysis of 100% renewable energy systems—The case of Denmark in years 2030 and 2050," Energy, Elsevier, vol. 34(5), pages 524-531.
    32. Alberg Østergaard, Poul & Mathiesen, Brian Vad & Möller, Bernd & Lund, Henrik, 2010. "A renewable energy scenario for Aalborg Municipality based on low-temperature geothermal heat, wind power and biomass," Energy, Elsevier, vol. 35(12), pages 4892-4901.
    33. Ness, Barry & Urbel-Piirsalu, Evelin & Anderberg, Stefan & Olsson, Lennart, 2007. "Categorising tools for sustainability assessment," Ecological Economics, Elsevier, vol. 60(3), pages 498-508, January.
    34. Chatzimouratidis, Athanasios I. & Pilavachi, Petros A., 2009. "Technological, economic and sustainability evaluation of power plants using the Analytic Hierarchy Process," Energy Policy, Elsevier, vol. 37(3), pages 778-787, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carneiro, Maria Luisa N.M. & Pradelle, Florian & Braga, Sergio L. & Gomes, Marcos Sebastião P. & Martins, Ana Rosa F.A. & Turkovics, Franck & Pradelle, Renata N.C., 2017. "Potential of biofuels from algae: Comparison with fossil fuels, ethanol and biodiesel in Europe and Brazil through life cycle assessment (LCA)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 632-653.
    2. Ng, Rex T.L. & Fasahati, Peyman & Huang, Kefeng & Maravelias, Christos T., 2019. "Utilizing stillage in the biorefinery: Economic, technological and energetic analysis," Applied Energy, Elsevier, vol. 241(C), pages 491-503.
    3. Alessandra Cesaro & Vincenzo Belgiorno, 2015. "Combined Biogas and Bioethanol Production: Opportunities and Challenges for Industrial Application," Energies, MDPI, vol. 8(8), pages 1-24, August.
    4. Alessandra Procentese & Maria Elena Russo & Ilaria Di Somma & Antonio Marzocchella, 2020. "Kinetic Characterization of Enzymatic Hydrolysis of Apple Pomace as Feedstock for a Sugar-Based Biorefinery," Energies, MDPI, vol. 13(5), pages 1-12, February.
    5. Melts, Indrek & Ivask, Mari & Geetha, Mohan & Takeuchi, Kazuhiko & Heinsoo, Katrin, 2019. "Combining bioenergy and nature conservation: An example in wetlands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 293-302.
    6. Liesbeth de Schutter & Stefan Giljum & Tiina Häyhä & Martin Bruckner & Asjad Naqvi & Ines Omann & Sigrid Stagl, 2019. "Bioeconomy Transitions through the Lens of Coupled Social-Ecological Systems: A Framework for Place-Based Responsibility in the Global Resource System," Sustainability, MDPI, vol. 11(20), pages 1-23, October.
    7. Shaghaleh, Hiba & Xu, Xu & Liu, He & Wang, Shifa & Alhaj Hamoud, Yousef & Dong, Fuhao & Luo, Jinyue, 2019. "The effect of atmospheric pressure plasma pretreatment with various gases on the structural characteristics and chemical composition of wheat straw and applications to enzymatic hydrolysis," Energy, Elsevier, vol. 176(C), pages 195-210.
    8. Noonari, A.A. & Mahar, R.B. & Sahito, A.R. & Brohi, K.M., 2019. "Anaerobic co-digestion of canola straw and banana plant wastes with buffalo dung: Effect of Fe3O4 nanoparticles on methane yield," Renewable Energy, Elsevier, vol. 133(C), pages 1046-1054.
    9. Ge, Yuntian & Li, Lin & Yun, Lingxiang, 2021. "Modeling and economic optimization of cellulosic biofuel supply chain considering multiple conversion pathways," Applied Energy, Elsevier, vol. 281(C).
    10. Kafle, Sagar & Parajuli, Ranjan & Bhattarai, Sujala & Euh, Seung Hee & Kim, Dae Hyun, 2017. "A review on energy systems and GHG emissions reduction plan and policy of the Republic of Korea: Past, present, and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1123-1130.
    11. Jankowski, Krzysztof Józef & Dubis, Bogdan & Sokólski, Mateusz Mikołaj & Załuski, Dariusz & Bórawski, Piotr & Szempliński, Władysław, 2019. "Biomass yield and energy balance of Virginia fanpetals in different production technologies in north-eastern Poland," Energy, Elsevier, vol. 185(C), pages 612-623.
    12. Morone, Amruta & Apte, Mayura & Pandey, R.A., 2015. "Levulinic acid production from renewable waste resources: Bottlenecks, potential remedies, advancements and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 548-565.
    13. Francesca Demichelis & Francesco Piovano & Silvia Fiore, 2019. "Biowaste Management in Italy: Challenges and Perspectives," Sustainability, MDPI, vol. 11(15), pages 1-21, August.
    14. Roope Husgafvel & Kari Poikela & Juha Honkatukia & Olli Dahl, 2017. "Development and Piloting of Sustainability Assessment Metrics for Arctic Process Industry in Finland—The Biorefinery Investment and Slag Processing Service Cases," Sustainability, MDPI, vol. 9(10), pages 1-16, September.
    15. Jung, Jong-Min & Kim, Sok & Lee, Jechan & Oh, Jeong Ik & Choi, Yoon-E. & Kwon, Eilhann E., 2019. "Tailoring pyrogenic products from pyrolysis of defatted Euglena gracilis using CO2 as reactive gas medium," Energy, Elsevier, vol. 174(C), pages 184-190.
    16. Tabatabaei, Meisam & Aghbashlo, Mortaza & Valijanian, Elena & Kazemi Shariat Panahi, Hamed & Nizami, Abdul-Sattar & Ghanavati, Hossein & Sulaiman, Alawi & Mirmohamadsadeghi, Safoora & Karimi, Keikhosr, 2020. "A comprehensive review on recent biological innovations to improve biogas production, Part 2: Mainstream and downstream strategies," Renewable Energy, Elsevier, vol. 146(C), pages 1392-1407.
    17. Jonas Zetterholm & Elina Bryngemark & Johan Ahlström & Patrik Söderholm & Simon Harvey & Elisabeth Wetterlund, 2020. "Economic Evaluation of Large-Scale Biorefinery Deployment: A Framework Integrating Dynamic Biomass Market and Techno-Economic Models," Sustainability, MDPI, vol. 12(17), pages 1-28, September.
    18. Yazan, Devrim Murat & Mandras, Giovanni & Garau, Giorgio, 2017. "Environmental and economic sustainability of integrated production in bio-refineries: The thistle case in Sardinia," Renewable Energy, Elsevier, vol. 102(PB), pages 349-360.
    19. Tim Patterson & Jaime Massanet‐Nicolau & Rhys Jones & Alessio Boldrin & Francesco Valentino & Richard Dinsdale & Alan Guwy, 2021. "Utilizing grass for the biological production of polyhydroxyalkanoates (PHAs) via green biorefining: Material and energy flows," Journal of Industrial Ecology, Yale University, vol. 25(3), pages 802-815, June.
    20. Ouhimmou, Mustapha & Rönnqvist, Mikael & Lapointe, Louis-Alexandre, 2021. "Assessment of sustainable integration of new products into value chain through a generic decision support model: An application to the forest value chain," Omega, Elsevier, vol. 99(C).
    21. Furtado Júnior, Juarez Corrêa & Palacio, José Carlos Escobar & Leme, Rafael Coradi & Lora, Electo Eduardo Silva & da Costa, José Eduardo Loureiro & Reyes, Arnaldo Martín Martínez & del Olmo, Oscar Alm, 2020. "Biorefineries productive alternatives optimization in the brazilian sugar and alcohol industry," Applied Energy, Elsevier, vol. 259(C).
    22. Venturini, Giada & Pizarro-Alonso, Amalia & Münster, Marie, 2019. "How to maximise the value of residual biomass resources: The case of straw in Denmark," Applied Energy, Elsevier, vol. 250(C), pages 369-388.
    23. Sadhukhan, Jhuma & Martinez-Hernandez, Elias & Murphy, Richard J. & Ng, Denny K.S. & Hassim, Mimi H. & Siew Ng, Kok & Yoke Kin, Wan & Jaye, Ida Fahani Md & Leung Pah Hang, Melissa Y. & Andiappan, Vikn, 2018. "Role of bioenergy, biorefinery and bioeconomy in sustainable development: Strategic pathways for Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1966-1987.
    24. Scaldaferri, C.A. & Pasa, V.M.D., 2019. "Green diesel production from upgrading of cashew nut shell liquid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 303-313.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa & Zhao, Jun-Hong, 2009. "Review on multi-criteria decision analysis aid in sustainable energy decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2263-2278, December.
    2. Shen, Yung-Chi & Lin, Grace T.R. & Li, Kuang-Pin & Yuan, Benjamin J.C., 2010. "An assessment of exploiting renewable energy sources with concerns of policy and technology," Energy Policy, Elsevier, vol. 38(8), pages 4604-4616, August.
    3. Mainali, Brijesh & Silveira, Semida, 2015. "Using a sustainability index to assess energy technologies for rural electrification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1351-1365.
    4. Strantzali, Eleni & Aravossis, Konstantinos, 2016. "Decision making in renewable energy investments: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 885-898.
    5. Kurka, Thomas & Blackwood, David, 2013. "Participatory selection of sustainability criteria and indicators for bioenergy developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 92-102.
    6. Liu, Gang, 2014. "Development of a general sustainability indicator for renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 611-621.
    7. Zhang, Weishi & Wang, Can & Zhang, Long & Xu, Ying & Cui, Yuanzheng & Lu, Zifeng & Streets, David G., 2018. "Evaluation of the performance of distributed and centralized biomass technologies in rural China," Renewable Energy, Elsevier, vol. 125(C), pages 445-455.
    8. Kurka, Thomas & Blackwood, David, 2013. "Selection of MCA methods to support decision making for renewable energy developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 225-233.
    9. Troldborg, Mads & Heslop, Simon & Hough, Rupert L., 2014. "Assessing the sustainability of renewable energy technologies using multi-criteria analysis: Suitability of approach for national-scale assessments and associated uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1173-1184.
    10. Mourmouris, J.C. & Potolias, C., 2013. "A multi-criteria methodology for energy planning and developing renewable energy sources at a regional level: A case study Thassos, Greece," Energy Policy, Elsevier, vol. 52(C), pages 522-530.
    11. Maxim, Alexandru, 2014. "Sustainability assessment of electricity generation technologies using weighted multi-criteria decision analysis," Energy Policy, Elsevier, vol. 65(C), pages 284-297.
    12. Alkan, Ömer & Albayrak, Özlem Karadağ, 2020. "Ranking of renewable energy sources for regions in Turkey by fuzzy entropy based fuzzy COPRAS and fuzzy MULTIMOORA," Renewable Energy, Elsevier, vol. 162(C), pages 712-726.
    13. Shen, Yung-Chi & Chou, Chiyang James & Lin, Grace T.R., 2011. "The portfolio of renewable energy sources for achieving the three E policy goals," Energy, Elsevier, vol. 36(5), pages 2589-2598.
    14. Büyüközkan, Gülçin & Karabulut, Yağmur, 2017. "Energy project performance evaluation with sustainability perspective," Energy, Elsevier, vol. 119(C), pages 549-560.
    15. Kayakutlu, Gulgun & Daim, Tugrul & Kunt, Meltem & Altay, Ayca & Suharto, Yulianto, 2017. "Scenarios for regional waste management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1323-1335.
    16. Dombi, Mihály & Kuti, István & Balogh, Péter, 2014. "Sustainability assessment of renewable power and heat generation technologies," Energy Policy, Elsevier, vol. 67(C), pages 264-271.
    17. Büyüközkan, Gülçin & Güleryüz, Sezin, 2016. "An integrated DEMATEL-ANP approach for renewable energy resources selection in Turkey," International Journal of Production Economics, Elsevier, vol. 182(C), pages 435-448.
    18. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Khalifah, Zainab & Zakuan, Norhayati & Jusoh, Ahmad & Nor, Khalil Md & Khoshnoudi, Masoumeh, 2017. "A review of multi-criteria decision-making applications to solve energy management problems: Two decades from 1995 to 2015," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 216-256.
    19. Cartelle Barros, Juan José & Lara Coira, Manuel & de la Cruz López, María Pilar & del Caño Gochi, Alfredo, 2015. "Assessing the global sustainability of different electricity generation systems," Energy, Elsevier, vol. 89(C), pages 473-489.
    20. Akber, Muhammad Zeshan & Thaheem, Muhammad Jamaluddin & Arshad, Husnain, 2017. "Life cycle sustainability assessment of electricity generation in Pakistan: Policy regime for a sustainable energy mix," Energy Policy, Elsevier, vol. 111(C), pages 111-126.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:43:y:2015:i:c:p:244-263. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.