IDEAS home Printed from https://ideas.repec.org/a/eco/journ2/2022-02-55.html
   My bibliography  Save this article

Benchmarking the Energy Efficiency of Higher Educational Buildings: A Case Study Approach

Author

Listed:
  • Muhammad Azim Mohd Shukri

    (Advanced Built Environment Sustainability Focus Group (BESTy), Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia)

  • Junaidah Jailani

    (Advanced Built Environment Sustainability Focus Group (BESTy), Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia)

  • Ali Hauashdh

    (Advanced Built Environment Sustainability Focus Group (BESTy), Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia)

Abstract

Previous studies have reported that buildings consume nearly 36% of the total energy used and contribute towards 30% of the total carbon dioxide (CO2) emissions. Therefore, improving energy efficiency in buildings is essential to enhance a sustainable built environment. This research employed a case study approach with the Universiti Tun Hussein Onn Malaysia (UTHM) being selected as the case study. A number of buildings recorded high annual energy consumption (EC) data while others recorded low energy consumption. This was due to the absence of a benchmark line reference for campus buildings, thereby causing a significant difference in the energy consumption of each building. The study's aim was to develop an energy efficiency benchmark for university buildings by using statistical analysis. From statistical analysis, the standard practical range was between 72.5 141.0 kWh/m2/yr. Buildings with an energy consumption per unit area value below 72.5 kWh/m2/yr are regarded as best energy efficient buildings. In contrast, those above 141.0 kWh/m2/yr are considered poor energy efficient buildings. For recommendation, buildings that exceed the maximum value of this range require stricter supervision and monitoring by the university management.

Suggested Citation

  • Muhammad Azim Mohd Shukri & Junaidah Jailani & Ali Hauashdh, 2022. "Benchmarking the Energy Efficiency of Higher Educational Buildings: A Case Study Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 12(2), pages 491-496, March.
  • Handle: RePEc:eco:journ2:2022-02-55
    as

    Download full text from publisher

    File URL: https://www.econjournals.com/index.php/ijeep/article/download/11941/6716
    Download Restriction: no

    File URL: https://www.econjournals.com/index.php/ijeep/article/view/11941
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chung, William, 2011. "Review of building energy-use performance benchmarking methodologies," Applied Energy, Elsevier, vol. 88(5), pages 1470-1479, May.
    2. Juaidi, Adel & AlFaris, Fadi & Montoya, Francisco G. & Manzano-Agugliaro, Francisco, 2016. "Energy benchmarking for shopping centers in Gulf Coast region," Energy Policy, Elsevier, vol. 91(C), pages 247-255.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Angeliki Tsantili & Irene Koronaki & Vasilis Polydoros, 2023. "Maximizing Energy Performance of University Campus Buildings through BIM Software and Multicriteria Optimization Methods," Energies, MDPI, vol. 16(5), pages 1-20, February.
    2. Olusola Olaitan Ayeleru & Joshua Adeniyi Adeniran & Sula Bantubakhona Kwesi Ntsaluba & Lanrewaju Ibrahim Fajimi & Peter Apata Olubambi, 2023. "An Economic Analysis of Energy Consumption at Student Residences in a South African-Based Academic Institution Using NARX Neural Network," Energies, MDPI, vol. 16(2), pages 1-14, January.
    3. Acinia Nindartin & Hee-Woon Moon & Sang-Jun Park & Kyung-Tae Lee & Jin-Bin Im & Ju-Hyung Kim, 2022. "Influencing of the Building Energy Policies upon the Efficiency of Energy Consumption: The Case of Courthouse Buildings in South Korea," Energies, MDPI, vol. 15(18), pages 1-17, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salvatori, Simone & Benedetti, Miriam & Bonfà, Francesca & Introna, Vito & Ubertini, Stefano, 2018. "Inter-sectorial benchmarking of compressed air generation energy performance: Methodology based on real data gathering in large and energy-intensive industrial firms," Applied Energy, Elsevier, vol. 217(C), pages 266-280.
    2. Tomasz Jałowiec & Henryk Wojtaszek, 2021. "Analysis of the RES Potential in Accordance with the Energy Policy of the European Union," Energies, MDPI, vol. 14(19), pages 1-33, September.
    3. Abou-Ziyan, Hosny Z. & Alajmi, Ali F., 2014. "Effect of load-sharing operation strategy on the aggregate performance of existed multiple-chiller systems," Applied Energy, Elsevier, vol. 135(C), pages 329-338.
    4. Zhou, Yuren & Lork, Clement & Li, Wen-Tai & Yuen, Chau & Keow, Yeong Ming, 2019. "Benchmarking air-conditioning energy performance of residential rooms based on regression and clustering techniques," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    5. Rita, Rui & Marques, Vitor & Bárbara, Diogo & Chaves, Inês & Macedo, Pedro & Moutinho, Victor & Pereira, Mariana, 2023. "Crossing non-parametric and parametric techniques for measuring the efficiency: Evidence from 65 European electricity Distribution System Operators," Energy, Elsevier, vol. 283(C).
    6. Ziemele, Jelena & Gravelsins, Armands & Blumberga, Andra & Blumberga, Dagnija, 2017. "Sustainability of heat energy tariff in district heating system: Statistic and dynamic methodologies," Energy, Elsevier, vol. 137(C), pages 834-845.
    7. Sameh Monna & Adel Juaidi & Ramez Abdallah & Aiman Albatayneh & Patrick Dutournie & Mejdi Jeguirim, 2021. "Towards Sustainable Energy Retrofitting, a Simulation for Potential Energy Use Reduction in Residential Buildings in Palestine," Energies, MDPI, vol. 14(13), pages 1-13, June.
    8. Lu, Zhijian & Shao, Shuai, 2016. "Impacts of government subsidies on pricing and performance level choice in Energy Performance Contracting: A two-step optimal decision model," Applied Energy, Elsevier, vol. 184(C), pages 1176-1183.
    9. Fernández, David & Pozo, Carlos & Folgado, Rubén & Jiménez, Laureano & Guillén-Gosálbez, Gonzalo, 2018. "Productivity and energy efficiency assessment of existing industrial gases facilities via data envelopment analysis and the Malmquist index," Applied Energy, Elsevier, vol. 212(C), pages 1563-1577.
    10. Carmen de la Cruz-Lovera & Alberto-Jesus Perea-Moreno & José Luis de la Cruz-Fernández & Francisco G. Montoya & Alfredo Alcayde & Francisco Manzano-Agugliaro, 2019. "Analysis of Research Topics and Scientific Collaborations in Energy Saving Using Bibliometric Techniques and Community Detection," Energies, MDPI, vol. 12(10), pages 1-23, May.
    11. Desideri, Umberto & Leonardi, Daniela & Arcioni, Livia & Sdringola, Paolo, 2012. "European project Educa-RUE: An example of energy efficiency paths in educational buildings," Applied Energy, Elsevier, vol. 97(C), pages 384-395.
    12. Bian, Yiwen & He, Ping & Xu, Hao, 2013. "Estimation of potential energy saving and carbon dioxide emission reduction in China based on an extended non-radial DEA approach," Energy Policy, Elsevier, vol. 63(C), pages 962-971.
    13. Antonio Paone & Jean-Philippe Bacher, 2018. "The Impact of Building Occupant Behavior on Energy Efficiency and Methods to Influence It: A Review of the State of the Art," Energies, MDPI, vol. 11(4), pages 1-19, April.
    14. Marzouk, Mohamed & Seleem, Noreihan, 2018. "Assessment of existing buildings performance using system dynamics technique," Applied Energy, Elsevier, vol. 211(C), pages 1308-1323.
    15. Xueliang Yuan & Xiaoyu Zhang & Jiaxin Liang & Qingsong Wang & Jian Zuo, 2017. "The Development of Building Energy Conservation in China: A Review and Critical Assessment from the Perspective of Policy and Institutional System," Sustainability, MDPI, vol. 9(9), pages 1-22, September.
    16. Eldho Abraham & Vladyslav Cherpak & Bohdan Senyuk & Jan Bart Hove & Taewoo Lee & Qingkun Liu & Ivan I. Smalyukh, 2023. "Highly transparent silanized cellulose aerogels for boosting energy efficiency of glazing in buildings," Nature Energy, Nature, vol. 8(4), pages 381-396, April.
    17. Wang, H. & Zhou, D.Q. & Zhou, P. & Zha, D.L., 2012. "Direct rebound effect for passenger transport: Empirical evidence from Hong Kong," Applied Energy, Elsevier, vol. 92(C), pages 162-167.
    18. Gilboa, Shaked & Vilnai-Yavetz, Iris & Mitchell, Vince, 2024. "Shopping mall detachment: Why do some consumers avoid malls?," Journal of Retailing and Consumer Services, Elsevier, vol. 78(C).
    19. Mousavi-Avval, Seyed Hashem & Rafiee, Shahin & Jafari, Ali & Mohammadi, Ali, 2011. "Optimization of energy consumption for soybean production using Data Envelopment Analysis (DEA) approach," Applied Energy, Elsevier, vol. 88(11), pages 3765-3772.
    20. Hsu, David, 2014. "How much information disclosure of building energy performance is necessary?," Energy Policy, Elsevier, vol. 64(C), pages 263-272.

    More about this item

    Keywords

    Building Energy Benchmarking; Energy Consumption; Energy Efficiency; Energy Saving; Higher Educational Buildings;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eco:journ2:2022-02-55. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ilhan Ozturk (email available below). General contact details of provider: http://www.econjournals.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.