IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i5p2291-d1082099.html
   My bibliography  Save this article

Maximizing Energy Performance of University Campus Buildings through BIM Software and Multicriteria Optimization Methods

Author

Listed:
  • Angeliki Tsantili

    (School of Electrical and Computer Engineering, National Technical University of Athens, 15780 Athens, Greece)

  • Irene Koronaki

    (School of Mechanical Engineering, National Technical University of Athens, 15780 Athens, Greece)

  • Vasilis Polydoros

    (School of Mechanical Engineering, National Technical University of Athens, 15780 Athens, Greece)

Abstract

University buildings have high energy requirements due to their size, numerous users, and activities, which considerably contribute to environmental contamination. Implementing energy-saving solutions in these structures has a favorable influence on the economics and the conservation of energy resources. A higher education building’s energy behavior can be simulated using software to identify the optimal strategies that result in energy savings. In this research, Autodesk Revit, Autodesk Insight, and Green Building Studio are among the programs utilized to examine the energy efficiency of the university building in four European cities. Following the development of several energy-saving scenarios for the building, the offered solutions are evaluated based on their annual energy consumption, energy costs, and CO 2 emissions. Finally, multicriteria analysis techniques such as the AHP and PROMETHEE are applied to choose the best scenario for each instance. The study’s findings indicate that the ASHRAE Terminal Package Heat Pump scenario performed well in all of the cities examined, reducing yearly energy usage by 43.75% in Wien and annual energy costs by 47.31% in Mallorca. In comparison, the scenario utilizing a high-efficiency VAV system with a gas boiler and chiller came in last in all situations, resulting in a decrease of 12.67% in Mallorca’s annual energy usage and a reduction of 17.57% in Palermo’s annual energy expenses.

Suggested Citation

  • Angeliki Tsantili & Irene Koronaki & Vasilis Polydoros, 2023. "Maximizing Energy Performance of University Campus Buildings through BIM Software and Multicriteria Optimization Methods," Energies, MDPI, vol. 16(5), pages 1-20, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2291-:d:1082099
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/5/2291/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/5/2291/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hens, Luc & Pastijn, Hugo & Struys, Wally, 1992. "Multicriteria analysis of the burden sharing in the European Community," European Journal of Operational Research, Elsevier, vol. 59(2), pages 248-261, June.
    2. Saaty, Thomas L., 1990. "How to make a decision: The analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 48(1), pages 9-26, September.
    3. Muhammad Azim Mohd Shukri & Junaidah Jailani & Ali Hauashdh, 2022. "Benchmarking the Energy Efficiency of Higher Educational Buildings: A Case Study Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 12(2), pages 491-496, March.
    4. Salminen, Pekka & Hokkanen, Joonas & Lahdelma, Risto, 1998. "Comparing multicriteria methods in the context of environmental problems," European Journal of Operational Research, Elsevier, vol. 104(3), pages 485-496, February.
    5. Rong-Jong Wai, 2022. "Systematic Design of Energy-Saving Action Plans for Taiwan Campus by Considering Economic Benefits and Actual Demands," Energies, MDPI, vol. 15(18), pages 1-20, September.
    6. Neofytou, H. & Nikas, A. & Doukas, H., 2020. "Sustainable energy transition readiness: A multicriteria assessment index," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    7. Thomas L. Saaty & Luis G. Vargas, 2012. "Models, Methods, Concepts & Applications of the Analytic Hierarchy Process," International Series in Operations Research and Management Science, Springer, edition 2, number 978-1-4614-3597-6, April.
    8. Bouyssou, D. & Perny, P., 1992. "Ranking methods for valued preference relations : A characterization of a method based on leaving and entering flows," European Journal of Operational Research, Elsevier, vol. 61(1-2), pages 186-194, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Behzadian, Majid & Kazemzadeh, R.B. & Albadvi, A. & Aghdasi, M., 2010. "PROMETHEE: A comprehensive literature review on methodologies and applications," European Journal of Operational Research, Elsevier, vol. 200(1), pages 198-215, January.
    2. Jochen Wulf, 2020. "Development of an AHP hierarchy for managing omnichannel capabilities: a design science research approach," Business Research, Springer;German Academic Association for Business Research, vol. 13(1), pages 39-68, April.
    3. Kokaraki, Nikoleta & Hopfe, Christina J. & Robinson, Elaine & Nikolaidou, Elli, 2019. "Testing the reliability of deterministic multi-criteria decision-making methods using building performance simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 991-1007.
    4. Satheeskumar Navaratnam, 2022. "Selecting a Suitable Sustainable Construction Method for Australian High-Rise Building: A Multi-Criteria Analysis," Sustainability, MDPI, vol. 14(12), pages 1-17, June.
    5. Md Monjurul Islam & Tofael Ahamed & Ryozo Noguchi, 2018. "Land Suitability and Insurance Premiums: A GIS-based Multicriteria Analysis Approach for Sustainable Rice Production," Sustainability, MDPI, vol. 10(6), pages 1-28, May.
    6. Hadi Soltanifard & Elham Jafari, 2019. "A conceptual framework to assess ecological quality of urban green space: a case study in Mashhad city, Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(4), pages 1781-1808, August.
    7. Klaus D. Goepel, 2019. "Comparison of Judgment Scales of the Analytical Hierarchy Process — A New Approach," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(02), pages 445-463, March.
    8. Romero-Ramos, J.A. & Gil, J.D. & Cardemil, J.M. & Escobar, R.A. & Arias, I. & Pérez-García, M., 2023. "A GIS-AHP approach for determining the potential of solar energy to meet the thermal demand in southeastern Spain productive enclaves," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    9. Dinesh Seth & Minhaj Ahemad A. Rehman, 2022. "Critical success factors‐based strategy to facilitate green manufacturing for responsible business: An application experience in Indian context," Business Strategy and the Environment, Wiley Blackwell, vol. 31(7), pages 2786-2806, November.
    10. Tamer F. Abdelmaguid & Waleed Elrashidy, 2019. "Halting decisions for gas pipeline construction projects using AHP: a case study," Operational Research, Springer, vol. 19(1), pages 179-199, March.
    11. Zhao, Lu-Tao & Liu, Zhao-Ting & Cheng, Lei, 2021. "How will China's coal industry develop in the future? A quantitative analysis with policy implications," Energy, Elsevier, vol. 235(C).
    12. Billal Hossen & Helmut Yabar & Takeshi Mizunoya, 2021. "Land Suitability Assessment for Pulse (Green Gram) Production through Remote Sensing, GIS and Multicriteria Analysis in the Coastal Region of Bangladesh," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
    13. Oliveira, Gilson Adamczuk & Tan, Kim Hua & Guedes, Bruno Turmina, 2018. "Lean and green approach: An evaluation tool for new product development focused on small and medium enterprises," International Journal of Production Economics, Elsevier, vol. 205(C), pages 62-73.
    14. Manolan Kandy, D. & Mörtberg, U. & Wretling, V. & Kuhlefelt, A. & Byström, G. & Polatidis, H. & Barney, A. & Balfors, B., 2024. "Spatial multicriteria framework for sustainable wind-farm planning – Accounting for conflicts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    15. Kubińska, Elżbieta & Adamczyk-Kowalczuk, Magdalena & Andrzejewski, Mariusz & Rozakis, Stelios, 2022. "Incorporating the status quo effect into the decision making process: The case of municipal companies merger," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    16. Rezaei, Jafar, 2015. "Best-worst multi-criteria decision-making method," Omega, Elsevier, vol. 53(C), pages 49-57.
    17. Mustafa Topuz & Mehmet Deniz, 2023. "Application of GIS and AHP for land use suitability analysis: case of Demirci district (Turkey)," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-15, December.
    18. Selef García-Orozco & Gregorio Vargas-Gutiérrez & Stephanie Ordóñez-Sánchez & Rodolfo Silva, 2023. "Using Multi-Criteria Decision Making in Quality Function Deployment for Offshore Renewable Energies," Energies, MDPI, vol. 16(18), pages 1-21, September.
    19. Zhou, P. & Ang, B.W. & Poh, K.L., 2006. "Decision analysis in energy and environmental modeling: An update," Energy, Elsevier, vol. 31(14), pages 2604-2622.
    20. Hubert Hirwa & Qiuying Zhang & Yunfeng Qiao & Yu Peng & Peifang Leng & Chao Tian & Sayidjakhon Khasanov & Fadong Li & Alphonse Kayiranga & Fabien Muhirwa & Auguste Cesar Itangishaka & Gabriel Habiyare, 2021. "Insights on Water and Climate Change in the Greater Horn of Africa: Connecting Virtual Water and Water-Energy-Food-Biodiversity-Health Nexus," Sustainability, MDPI, vol. 13(11), pages 1-22, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2291-:d:1082099. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.