IDEAS home Printed from https://ideas.repec.org/a/eco/journ2/2022-02-5.html
   My bibliography  Save this article

Energy Recovery Potential of Livestock Waste with Thermal and Biological Technologies: Analysis on Cattle, Sheep, Goat and Chicken Manure

Author

Listed:
  • Hasan Suphi Altan

    (Faculty of Civil Engineering, Environmental Engineering Department, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey)

  • Derin Orhon

    (The Science Academy, 34349, Istanbul, Turkey)

  • Seval Sozen

    (Faculty of Civil Engineering, Environmental Engineering Department, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey)

Abstract

This study aims to establish the scientific link between the livestock wastes and energy recovery processes to implement the most appropriate technology at the highest economic benefit. The evaluation was based on the recovery of the potential energy of the mixture of four livestock wastes (cattle, sheep, goat, egg chicken) by four different energy recovery processes. Incineration, gasification, pyrolysis at 550 C and 750 C were applied as thermal processes together with the anaerobic digestion as biochemical process. The recovery performance of each process was evaluated within a defined design algorithm considering all significant parameters in seven geographical regions and in Turkey as a whole. Incineration seems to be the most efficient energy recovery process with 0.43 MWe/t for Turkey. Gasification took the second place in the energy recovery ranking with 0.34 MWe/t, 21% less than incineration. Pyrolysis expressed an energy recovery rate of 0.15 MWe/t at 550 C and a twice higher rate at 750 C, at a level close to gasification. Anaerobic digestion exerted a recovery potential of 0.21 MWe/t for the livestock waste considered. Energy recovery from livestock waste not only contributes to energy production, but also provides compliance with the concept of reducing emissions and sustainable environment.

Suggested Citation

  • Hasan Suphi Altan & Derin Orhon & Seval Sozen, 2022. "Energy Recovery Potential of Livestock Waste with Thermal and Biological Technologies: Analysis on Cattle, Sheep, Goat and Chicken Manure," International Journal of Energy Economics and Policy, Econjournals, vol. 12(2), pages 39-52, March.
  • Handle: RePEc:eco:journ2:2022-02-5
    as

    Download full text from publisher

    File URL: https://www.econjournals.com/index.php/ijeep/article/download/12733/6656
    Download Restriction: no

    File URL: https://www.econjournals.com/index.php/ijeep/article/view/12733
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Moset, Veronica & Fontaine, Doline & Møller, Henrik B., 2017. "Co-digestion of cattle manure and grass harvested with different technologies. Effect on methane yield, digestate composition and energy balance," Energy, Elsevier, vol. 141(C), pages 451-460.
    2. Tańczuk, M. & Junga, R. & Werle, S. & Chabiński, M. & Ziółkowski, Ł., 2019. "Experimental analysis of the fixed bed gasification process of the mixtures of the chicken manure with biomass," Renewable Energy, Elsevier, vol. 136(C), pages 1055-1063.
    3. Mariusz Tańczuk & Robert Junga & Alicja Kolasa-Więcek & Patrycja Niemiec, 2019. "Assessment of the Energy Potential of Chicken Manure in Poland," Energies, MDPI, vol. 12(7), pages 1-18, April.
    4. Zarkadas, Ioannis S. & Sofikiti, Artemis S. & Voudrias, Evangelos A. & Pilidis, Georgios A., 2015. "Thermophilic anaerobic digestion of pasteurised food wastes and dairy cattle manure in batch and large volume laboratory digesters: Focussing on mixing ratios," Renewable Energy, Elsevier, vol. 80(C), pages 432-440.
    5. Åsa Hadin & Karl Hillman & Ola Eriksson, 2017. "Prospects for Increased Energy Recovery from Horse Manure—A Case Study of Management Practices, Environmental Impact and Costs," Energies, MDPI, vol. 10(12), pages 1-21, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Turzyński, Tomasz & Kluska, Jacek & Kardaś, Dariusz, 2022. "Study on chicken manure combustion and heat production in terms of thermal self-sufficiency of a poultry farm," Renewable Energy, Elsevier, vol. 191(C), pages 84-91.
    2. Wojciech Rzeźnik & Ilona Rzeźnik & Paulina Mielcarek-Bocheńska & Mateusz Urbański, 2023. "Air Pollutants Emission during Co-Combustion of Animal Manure and Wood Pellets in 15 kW Boiler," Energies, MDPI, vol. 16(18), pages 1-17, September.
    3. Wang, Linzheng & Zhang, Ruizhi & Deng, Ruiqu & Liu, Zeqing & Luo, Yonghao, 2023. "Comprehensive parametric study of fixed-bed co-gasification process through Multiple Thermally Thick Particle (MTTP) model," Applied Energy, Elsevier, vol. 348(C).
    4. Li, Fenghai & Zhao, Chaoyue & Guo, Qianqian & Li, Yang & Fan, Hongli & Guo, Mingxi & Wu, Lishun & Huang, Jiejie & Fang, Yitian, 2020. "Exploration in ash-deposition (AD) behavior modification of low-rank coal by manure addition," Energy, Elsevier, vol. 208(C).
    5. Awasthi, Mukesh Kumar & Sarsaiya, Surendra & Wainaina, Steven & Rajendran, Karthik & Kumar, Sumit & Quan, Wang & Duan, Yumin & Awasthi, Sanjeev Kumar & Chen, Hongyu & Pandey, Ashok & Zhang, Zengqiang , 2019. "A critical review of organic manure biorefinery models toward sustainable circular bioeconomy: Technological challenges, advancements, innovations, and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 115-131.
    6. Jiang, Chunlong & Lin, Qizhao & Wang, Chengxin & Jiang, Xuedan & Bi, Haobo & Bao, Lin, 2020. "Experimental study of the ignition and combustion characteristics of cattle manure under different environmental conditions," Energy, Elsevier, vol. 197(C).
    7. Sitka, Andrzej & Szulc, Piotr & Smykowski, Daniel & Jodkowski, Wiesław, 2021. "Application of poultry manure as an energy resource by its gasification in a prototype rotary counterflow gasifier," Renewable Energy, Elsevier, vol. 175(C), pages 422-429.
    8. Saha, Chayan Kumer & Nandi, Rajesh & Akter, Shammi & Hossain, Samira & Kabir, Kazi Bayzid & Kirtania, Kawnish & Islam, Md Tahmid & Guidugli, Laura & Reza, M. Toufiq & Alam, Md Monjurul, 2024. "Technical prospects and challenges of anaerobic co-digestion in Bangladesh: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    9. Mariyam, Sabah & Shahbaz, Muhammad & Al-Ansari, Tareq & Mackey, Hamish. R & McKay, Gordon, 2022. "A critical review on co-gasification and co-pyrolysis for gas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    10. Shuang Liu & Wenzhe Li & Guoxiang Zheng & Haiyan Yang & Longhai Li, 2020. "Optimization of Cattle Manure and Food Waste Co-Digestion for Biohydrogen Production in a Mesophilic Semi-Continuous Process," Energies, MDPI, vol. 13(15), pages 1-13, July.
    11. Isabela Gomes Barreto da Motta & Larice Aparecida Rezende Santana & Hyago Passe Pereira & Vanessa Romário de Paula & Marta Fonseca Martins & Jailton da Costa Carneiro & Marcelo Henrique Otenio, 2022. "Population Dynamics of Methanogenic Archea in Co-Digestion Systems Operating Different Industrial Residues for Biogas Production," Sustainability, MDPI, vol. 14(18), pages 1-14, September.
    12. Marcin Sajdak & Roksana Muzyka & Grzegorz Gałko & Ewelina Ksepko & Monika Zajemska & Szymon Sobek & Dariusz Tercki, 2022. "Actual Trends in the Usability of Biochar as a High-Value Product of Biomass Obtained through Pyrolysis," Energies, MDPI, vol. 16(1), pages 1-30, December.
    13. Teodora Stillitano & Emanuele Spada & Nathalie Iofrida & Giacomo Falcone & Anna Irene De Luca, 2021. "Sustainable Agri-Food Processes and Circular Economy Pathways in a Life Cycle Perspective: State of the Art of Applicative Research," Sustainability, MDPI, vol. 13(5), pages 1-28, February.
    14. Tańczuk, Mariusz, 2023. "Reconfiguration of a small, inefficient district heating systems by means of biomass Organic Rankine Cycle cogeneration plants – Polish and German perspective after 2035," Renewable Energy, Elsevier, vol. 211(C), pages 452-458.
    15. Zarkadas, I. & Dontis, G. & Pilidis, G. & Sarigiannis, D.A., 2016. "Exploring the potential of fur farming wastes and byproducts as substrates to anaerobic digestion process," Renewable Energy, Elsevier, vol. 96(PB), pages 1063-1070.
    16. Nour El Houda Chaher & Safwat Hemidat & Qahtan Thabit & Mehrez Chakchouk & Abdallah Nassour & Moktar Hamdi & Michael Nelles, 2020. "Potential of Sustainable Concept for Handling Organic Waste in Tunisia," Sustainability, MDPI, vol. 12(19), pages 1-31, October.
    17. Izabella Maj & Sylwester Kalisz & Szymon Ciukaj, 2022. "Properties of Animal-Origin Ash—A Valuable Material for Circular Economy," Energies, MDPI, vol. 15(4), pages 1-15, February.
    18. Fernandez-Lopez, M. & López-González, D. & Puig-Gamero, M. & Valverde, J.L. & Sanchez-Silva, L., 2016. "CO2 gasification of dairy and swine manure: A life cycle assessment approach," Renewable Energy, Elsevier, vol. 95(C), pages 552-560.
    19. Usmani, Sameer & Gonzalez Quiroga, Arturo & Vasquez Padilla, Ricardo & Palmer, Graeme & Lake, Maree, 2020. "Simulation model of the characteristics of syngas from hardwood biomass for thermally integrated gasification using unisim design tool," Energy, Elsevier, vol. 211(C).
    20. Chan, Pak Chuen & de Toledo, Renata Alves & Shim, Hojae, 2018. "Anaerobic co-digestion of food waste and domestic wastewater – Effect of intermittent feeding on short and long chain fatty acids accumulation," Renewable Energy, Elsevier, vol. 124(C), pages 129-135.

    More about this item

    Keywords

    energy recovery; livestock waste; incineration; gasification; pyrolysis; anaerobic digestion;
    All these keywords.

    JEL classification:

    • Q29 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Other
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eco:journ2:2022-02-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ilhan Ozturk (email available below). General contact details of provider: http://www.econjournals.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.