IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i12p1935-d120109.html
   My bibliography  Save this article

Prospects for Increased Energy Recovery from Horse Manure—A Case Study of Management Practices, Environmental Impact and Costs

Author

Listed:
  • Åsa Hadin

    (Department of Building, Energy and Environmental Engineering, Faculty of Engineering and Sustainable Development, University of Gävle, Kungsbäcksvägen 47, SE-801 76 Gävle, Sweden)

  • Karl Hillman

    (Department of Building, Energy and Environmental Engineering, Faculty of Engineering and Sustainable Development, University of Gävle, Kungsbäcksvägen 47, SE-801 76 Gävle, Sweden)

  • Ola Eriksson

    (Department of Building, Energy and Environmental Engineering, Faculty of Engineering and Sustainable Development, University of Gävle, Kungsbäcksvägen 47, SE-801 76 Gävle, Sweden)

Abstract

A transition to renewable energy sources and a circular economy has increased interest in renewable resources not usually considered as energy sources or plant nutrient resources. Horse manure exemplifies this, as it is sometimes recycled but not often used for energy purposes. The purpose of this study was to explore horse manure management in a Swedish municipality and prospects for energy recovery. The case study includes a survey of horse manure practices, environmental assessment of horse manure treatment in a biogas plant, including associated transport, compared to on-site unmanaged composting, and finally a simplified economic analysis. It was found that horse manure management was characterized by indoor collection of manure most of the year and storage on concrete slabs or in containers, followed by direct application on arable land. Softwood was predominantly used as bedding, and bedding accounted for a relatively small proportion (13%) of the total mix. Anaerobic digestion was indicated to reduce potential environmental impact in comparison to unmanaged composting, mainly due to biogas substituting use of fossil fuels. The relative environmental impact from transport of manure from horse facilities to anaerobic digestion plant was small. Results also indicate a relatively high cost for horse keepers to change from composting on site to anaerobic digestion in a centralized plant.

Suggested Citation

  • Åsa Hadin & Karl Hillman & Ola Eriksson, 2017. "Prospects for Increased Energy Recovery from Horse Manure—A Case Study of Management Practices, Environmental Impact and Costs," Energies, MDPI, vol. 10(12), pages 1-21, November.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:1935-:d:120109
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/12/1935/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/12/1935/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hadin, Åsa & Eriksson, Ola & Hillman, Karl, 2016. "A review of potential critical factors in horse keeping for anaerobic digestion of horse manure," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 432-442.
    2. Ola Eriksson & Åsa Hadin & Jay Hennessy & Daniel Jonsson, 2016. "Life Cycle Assessment of Horse Manure Treatment," Energies, MDPI, vol. 9(12), pages 1-19, November.
    3. Qiao, Wei & Yan, Xiuyi & Ye, Junhui & Sun, Yifei & Wang, Wei & Zhang, Zhongzhi, 2011. "Evaluation of biogas production from different biomass wastes with/without hydrothermal pretreatment," Renewable Energy, Elsevier, vol. 36(12), pages 3313-3318.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hasan Suphi Altan & Derin Orhon & Seval Sozen, 2022. "Energy Recovery Potential of Livestock Waste with Thermal and Biological Technologies: Analysis on Cattle, Sheep, Goat and Chicken Manure," International Journal of Energy Economics and Policy, Econjournals, vol. 12(2), pages 39-52, March.
    2. Ionica Oncioiu & Sorinel Căpuşneanu & Mirela Cătălina Türkeș & Dan Ioan Topor & Dana-Maria Oprea Constantin & Andreea Marin-Pantelescu & Mihaela Ștefan Hint, 2018. "The Sustainability of Romanian SMEs and Their Involvement in the Circular Economy," Sustainability, MDPI, vol. 10(8), pages 1-19, August.
    3. Giorgio Provolo & Gabriele Mattachini & Alberto Finzi & Martina Cattaneo & Viviana Guido & Elisabetta Riva, 2018. "Global Warming and Acidification Potential Assessment of a Collective Manure Management System for Bioenergy Production and Nitrogen Removal in Northern Italy," Sustainability, MDPI, vol. 10(10), pages 1-18, October.
    4. Teodora Stillitano & Emanuele Spada & Nathalie Iofrida & Giacomo Falcone & Anna Irene De Luca, 2021. "Sustainable Agri-Food Processes and Circular Economy Pathways in a Life Cycle Perspective: State of the Art of Applicative Research," Sustainability, MDPI, vol. 13(5), pages 1-28, February.
    5. Suzy C. Cortez & Adriana C. Cherri & Daniel Jugend & Gessica M. K. Jesus & Barbara S. Bezerra, 2022. "How Can Biodigesters Help Drive the Circular Economy? An Analysis Based on the SWOT Matrix and Case Studies," Sustainability, MDPI, vol. 14(13), pages 1-15, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Svanberg, Martin & Finnsgård, Christian & Flodén, Jonas & Lundgren, Joakim, 2018. "Analyzing animal waste-to-energy supply chains: The case of horse manure," Renewable Energy, Elsevier, vol. 129(PB), pages 830-837.
    2. Bidart, Christian & Fröhling, Magnus & Schultmann, Frank, 2014. "Electricity and substitute natural gas generation from the conversion of wastewater treatment plant sludge," Applied Energy, Elsevier, vol. 113(C), pages 404-413.
    3. Avaci, Angelica Buzinaro & Melegari de Souza, Samuel Nelson & Werncke, Ivan & Chaves, Luiz Inácio, 2013. "Financial economic scenario for the microgeneration of electric energy from swine culture-originated biogas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 272-276.
    4. T. Dlabaja & J. Malaťák, 2013. "Optimization of anaerobic fermentation of kitchen waste," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 59(1), pages 1-8.
    5. Aragon-Briceño, Christian & Pożarlik, Artur & Bramer, Eddy & Brem, Gerrit & Wang, Shule & Wen, Yuming & Yang, Weihong & Pawlak-Kruczek, Halina & Niedźwiecki, Łukasz & Urbanowska, Agnieszka & Mościcki,, 2022. "Integration of hydrothermal carbonization treatment for water and energy recovery from organic fraction of municipal solid waste digestate," Renewable Energy, Elsevier, vol. 184(C), pages 577-591.
    6. Venus, Terese E. & Strauss, Felix & Venus, Thomas J. & Sauer, Johannes, 2021. "Understanding stakeholder preferences for future biogas development in Germany," Land Use Policy, Elsevier, vol. 109(C).
    7. Aragón-Briceño, C.I. & Grasham, O. & Ross, A.B. & Dupont, V. & Camargo-Valero, M.A., 2020. "Hydrothermal carbonization of sewage digestate at wastewater treatment works: Influence of solid loading on characteristics of hydrochar, process water and plant energetics," Renewable Energy, Elsevier, vol. 157(C), pages 959-973.
    8. Maghanaki, M. Mohammadi & Ghobadian, B. & Najafi, G. & Galogah, R. Janzadeh, 2013. "Potential of biogas production in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 702-714.
    9. Ahmad, Fiaz & Silva, Edson Luiz & Varesche, Maria Bernadete Amâncio, 2018. "Hydrothermal processing of biomass for anaerobic digestion – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 108-124.
    10. Ola Eriksson & Åsa Hadin & Jay Hennessy & Daniel Jonsson, 2016. "Life Cycle Assessment of Horse Manure Treatment," Energies, MDPI, vol. 9(12), pages 1-19, November.
    11. Mong, Guo Ren & Chong, Cheng Tung & Ng, Jo-Han & Chong, William Woei Fong & Ong, Hwai Chyuan & Tran, Manh-Vu, 2021. "Multivariate optimisation study and life cycle assessment of microwave-induced pyrolysis of horse manure for waste valorisation and management," Energy, Elsevier, vol. 216(C).
    12. Negri, Camilla & Ricci, Marina & Zilio, Massimo & D'Imporzano, Giuliana & Qiao, Wei & Dong, Renjie & Adani, Fabrizio, 2020. "Anaerobic digestion of food waste for bio-energy production in China and Southeast Asia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    13. Jia Boh Tan & Nur Syakina Jamali & Wei En Tan & Hasfalina Che Man & Zurina Zainal Abidin, 2021. "Techno-Economic Assessment of On-Farm Anaerobic Digestion System Using Attached-Biofilm Reactor in the Dairy Industry," Sustainability, MDPI, vol. 13(4), pages 1-15, February.
    14. Saadabadi, S. Ali & Thallam Thattai, Aditya & Fan, Liyuan & Lindeboom, Ralph E.F. & Spanjers, Henri & Aravind, P.V., 2019. "Solid Oxide Fuel Cells fuelled with biogas: Potential and constraints," Renewable Energy, Elsevier, vol. 134(C), pages 194-214.
    15. Gao, Xingbao & Liu, Xiao & Wang, Wei, 2016. "Biodegradation of particulate organics and its enhancement during anaerobic co-digestion of municipal biowaste and waste activated sludge," Renewable Energy, Elsevier, vol. 96(PB), pages 1086-1092.
    16. Cao, Yucheng & Pawłowski, Artur, 2012. "Sewage sludge-to-energy approaches based on anaerobic digestion and pyrolysis: Brief overview and energy efficiency assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1657-1665.
    17. Theofanous, Elisavet & Kythreotou, Nicoletta & Panayiotou, Gregoris & Florides, Georgios & Vyrides, Ioannis, 2014. "Energy production from piggery waste using anaerobic digestion: Current status and potential in Cyprus," Renewable Energy, Elsevier, vol. 71(C), pages 263-270.
    18. Mayerle, Sérgio Fernando & Neiva de Figueiredo, João, 2016. "Designing optimal supply chains for anaerobic bio-digestion/energy generation complexes with distributed small farm feedstock sourcing," Renewable Energy, Elsevier, vol. 90(C), pages 46-54.
    19. George K. Symeon & Konstantina Akamati & Vassilios Dotas & Despoina Karatosidi & Iosif Bizelis & George P. Laliotis, 2025. "Manure Management as a Potential Mitigation Tool to Eliminate Greenhouse Gas Emissions in Livestock Systems," Sustainability, MDPI, vol. 17(2), pages 1-27, January.
    20. Oana-Daniela Lupoae & Riana Iren Radu & Alexandru Capatina & Violeta Maria Isai & Nicoleta Bărbuță-Mișu, 2023. "Exploring Precursors of Renewable Energy Portfolio Diversification Using TPB," Energies, MDPI, vol. 16(18), pages 1-19, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:1935-:d:120109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.