IDEAS home Printed from https://ideas.repec.org/a/eco/journ1/2017-05-47.html
   My bibliography  Save this article

Credit Risk, Deposit Mobilization and Profitability of Ghanaian Banks

Author

Listed:
  • John Akuma

    (Data Link Institute, PO. Box Co 2481, Tema, Ghana)

  • Isaac Doku

    (Data Link Institute, PO. Box C0 2481, Tema, Ghana,)

  • Nathaniel Awer

    (Data Link Institute, PO. Box C0 2481, Tema, Ghana)

Abstract

This paper seeks to investigate the relationship between deposit mobilization, credit risk and profitability of Ghanaian banks from 2002 to 2011. Secondary data were obtained from financial statements of 17 Ghanaian banks who have operated consistently within the study period. Panel regression analysis is used in the estimation of a function relating to the return on assets (ROA) to measures of credit risk and deposit mobilization as well a few control variables. The results reveal a significantly positive relationship between credit risk, deposit mobilization, growth in interest income, capital adequacy ratio and profitability of Ghanaian banks. However, a significantly negative relationship between year-on-year inflation and ROA was found. With regard to the relationship between bank size and profitability, the results found no significant association between the two. The research suggests that profitable banks in Ghana depend more on bank deposits as one of their main financing options. In the Ghanaian case, a high proportion (64.33%) of total liabilities is represented by bank deposits; attesting to the fact that Ghanaian banks largely depend on deposits for financing their operations. The study recommends that banks should implement effective strategies to mobilize more deposits from both the formal an informal sectors of the economy. They should also invest heavily in credit risk management. Both strategies will enhance their profitability.

Suggested Citation

  • John Akuma & Isaac Doku & Nathaniel Awer, 2017. "Credit Risk, Deposit Mobilization and Profitability of Ghanaian Banks," International Journal of Economics and Financial Issues, Econjournals, vol. 7(5), pages 394-399.
  • Handle: RePEc:eco:journ1:2017-05-47
    as

    Download full text from publisher

    File URL: https://www.econjournals.com/index.php/ijefi/article/download/5225/pdf
    Download Restriction: no

    File URL: https://www.econjournals.com/index.php/ijefi/article/view/5225/pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Joshua Abor, 2005. "The effect of capital structure on profitability: an empirical analysis of listed firms in Ghana," Journal of Risk Finance, Emerald Group Publishing, vol. 6(5), pages 438-445, November.
    2. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2006. "A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 499-526.
    3. Mr. Johan Mathisen & Thierry D. Buchs, 2005. "Competition and Efficiency in Banking: Behavioral Evidence from Ghana," IMF Working Papers 2005/017, International Monetary Fund.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eric Ghysels & Leonardo Iania & Jonas Striaukas, 2018. "Quantile-based Inflation Risk Models," Working Paper Research 349, National Bank of Belgium.
    2. Khémiri, Wafa & Noubbigh, Hédi, 2020. "Size-threshold effect in debt-firm performance nexus in the sub-Saharan region: A Panel Smooth Transition Regression approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 76(C), pages 335-344.
    3. ManYing Kang & Marcel Ausloos, 2017. "An Inverse Problem Study: Credit Risk Ratings as a Determinant of Corporate Governance and Capital Structure in Emerging Markets: Evidence from Chinese Listed Companies," Economies, MDPI, vol. 5(4), pages 1-23, November.
    4. Carlos Medel, 2017. "Forecasting Chilean inflation with the hybrid new keynesian Phillips curve: globalisation, combination, and accuracy," Journal Economía Chilena (The Chilean Economy), Central Bank of Chile, vol. 20(3), pages 004-050, December.
    5. Galvão, Ana Beatriz, 2013. "Changes in predictive ability with mixed frequency data," International Journal of Forecasting, Elsevier, vol. 29(3), pages 395-410.
    6. Eliana González & Luis F. Melo & Viviana Monroy & Brayan Rojas, 2009. "A Dynamic Factor Model For The Colombian Inflation," Borradores de Economia 5273, Banco de la Republica.
    7. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Realtime nowcasting with a Bayesian mixed frequency model with stochastic volatility," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(4), pages 837-862, October.
    8. repec:hal:spmain:info:hdl:2441/74362fq3f99s299n07e84dlcib is not listed on IDEAS
    9. Michael W. McCracken & Michael T. Owyang & Tatevik Sekhposyan, 2021. "Real-Time Forecasting and Scenario Analysis Using a Large Mixed-Frequency Bayesian VAR," International Journal of Central Banking, International Journal of Central Banking, vol. 17(71), pages 1-41, December.
    10. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    11. Ferrari, Davide & Ravazzolo, Francesco & Vespignani, Joaquin, 2021. "Forecasting energy commodity prices: A large global dataset sparse approach," Energy Economics, Elsevier, vol. 98(C).
    12. Stefano Puddu, 2013. "Real Sector and Banking System: Real and Feedback Effects. A Non-Linear VAR Approach," IRENE Working Papers 13-01, IRENE Institute of Economic Research.
    13. Ivan S. Maksymov, 2023. "Analogue and Physical Reservoir Computing Using Water Waves: Applications in Power Engineering and Beyond," Energies, MDPI, vol. 16(14), pages 1-26, July.
    14. Nonejad, Nima, 2022. "An interesting finding about the ability of geopolitical risk to forecast aggregate equity return volatility out-of-sample," Finance Research Letters, Elsevier, vol. 47(PB).
    15. Kosei Fukuda, 2010. "Three new empirical perspectives on the Hodrick–Prescott parameter," Empirical Economics, Springer, vol. 39(3), pages 713-731, December.
    16. Kapetanios, George & Marcellino, Massimiliano & Papailias, Fotis, 2016. "Forecasting inflation and GDP growth using heuristic optimisation of information criteria and variable reduction methods," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 369-382.
    17. Lutz Kilian & Robert J. Vigfusson, 2013. "Do Oil Prices Help Forecast U.S. Real GDP? The Role of Nonlinearities and Asymmetries," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 78-93, January.
    18. Michele Manna & Emmanuela Bernardini & Mauro Bufano & Davide Dottori, 2013. "Modelling public debt strategies," Questioni di Economia e Finanza (Occasional Papers) 199, Bank of Italy, Economic Research and International Relations Area.
    19. Fausto Vieira & Fernando Chague, Marcelo Fernandes, 2016. "A dynamic Nelson-Siegel model with forward-looking indicators for the yield curve in the US," Working Papers, Department of Economics 2016_31, University of São Paulo (FEA-USP).
    20. Foroni, Claudia & Marcellino, Massimiliano & Schumacher, Christian, 2011. "U-MIDAS: MIDAS regressions with unrestricted lag polynomials," Discussion Paper Series 1: Economic Studies 2011,35, Deutsche Bundesbank.
    21. Wright, Jonathan H., 2008. "Bayesian Model Averaging and exchange rate forecasts," Journal of Econometrics, Elsevier, vol. 146(2), pages 329-341, October.

    More about this item

    Keywords

    Profitability; Deposit Mobilization; Credit Risk;
    All these keywords.

    JEL classification:

    • E51 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Money Supply; Credit; Money Multipliers
    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eco:journ1:2017-05-47. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ilhan Ozturk (email available below). General contact details of provider: http://www.econjournals.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.