IDEAS home Printed from https://ideas.repec.org/a/ebl/ecbull/eb-18-00256.html
   My bibliography  Save this article

India's Universal Immunization Program: a lesson from Machine Learning

Author

Listed:
  • Dweepobotee Brahma

    (Western Michigan University)

  • Debasri Mukherjee

    (Western Michigan University)

Abstract

This paper examines the predictors of immunization coverages of children across Indian states and evaluates the role of Universal Immunization Program (UIP) - a comprehensive policy of the Indian government in that light. Employing Machine Learning methods such as LASSO and hierarchical LASSO, we find that not the UIP expenditure by itself, but health infrastructure turns out to be a robust predictor of immunization coverage. The policy prescription that follows from our study is that the immunization program should focus on promoting the required health infrastructure in addition to monitoring the usage of funds closely for facilitating effective usage of the money. We also scrutinize performances of ‘BIMARU', states that are considered traditionally underperforming states in terms of health and education.

Suggested Citation

  • Dweepobotee Brahma & Debasri Mukherjee, 2019. "India's Universal Immunization Program: a lesson from Machine Learning," Economics Bulletin, AccessEcon, vol. 39(1), pages 581-591.
  • Handle: RePEc:ebl:ecbull:eb-18-00256
    as

    Download full text from publisher

    File URL: http://www.accessecon.com/Pubs/EB/2019/Volume39/EB-19-V39-I1-P59.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sumon Kumar Bhaumik & Ralitza Dimova & Subal C. Kumbhakar & Kai Sun, 2018. "Is Tinkering with Institutional Quality a Panacea for Firm Performance? Insights from a Semiparametric Approach to Modeling Firm Performance," Review of Development Economics, Wiley Blackwell, vol. 22(1), pages 1-22, February.
    2. Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sophie-Charlotte Klose & Johannes Lederer, 2020. "A Pipeline for Variable Selection and False Discovery Rate Control With an Application in Labor Economics," Papers 2006.12296, arXiv.org, revised Jun 2020.
    2. Shoshan, Vered & Hazan, Tamir & Plonsky, Ori, 2023. "BEAST-Net: Learning novel behavioral insights using a neural network adaptation of a behavioral model," OSF Preprints kaeny, Center for Open Science.
    3. Juergen Deppner & Marcelo Cajias, 2024. "Accounting for Spatial Autocorrelation in Algorithm-Driven Hedonic Models: A Spatial Cross-Validation Approach," The Journal of Real Estate Finance and Economics, Springer, vol. 68(2), pages 235-273, February.
    4. Stephane Helleringer & Chong You & Laurence Fleury & Laetitia Douillot & Insa Diouf & Cheikh Tidiane Ndiaye & Valerie Delaunay & Rene Vidal, 2019. "Improving age measurement in low- and middle-income countries through computer vision: A test in Senegal," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 40(9), pages 219-260.
    5. Naguib, Costanza, 2019. "Estimating the Heterogeneous Impact of the Free Movement of Persons on Relative Wage Mobility," Economics Working Paper Series 1903, University of St. Gallen, School of Economics and Political Science.
    6. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    7. Akash Malhotra, 2018. "A hybrid econometric-machine learning approach for relative importance analysis: Prioritizing food policy," Papers 1806.04517, arXiv.org, revised Aug 2020.
    8. Thiemo Fetzer & Stephan Kyburz, 2024. "Cohesive Institutions and Political Violence," The Review of Economics and Statistics, MIT Press, vol. 106(1), pages 133-150, January.
    9. Dang, Hai-Anh & Carletto, Calogero & Gourlay, Sydney & Abanokova, Kseniya, 2024. "Addressing Soil Quality Data Gaps with Imputation: Evidence from Ethiopia and Uganda," GLO Discussion Paper Series 1445, Global Labor Organization (GLO).
    10. Tobias Götze & Marc Gürtler & Eileen Witowski, 2020. "Improving CAT bond pricing models via machine learning," Journal of Asset Management, Palgrave Macmillan, vol. 21(5), pages 428-446, September.
    11. Sascha O. Becker & Thiemo Fetzer, 2018. "Has Eastern European Migration Impacted UK-born Workers?," CAGE Online Working Paper Series 376, Competitive Advantage in the Global Economy (CAGE).
    12. Bailliu, Jeannine & Han, Xinfen & Kruger, Mark & Liu, Yu-Hsien & Thanabalasingam, Sri, 2019. "Can media and text analytics provide insights into labour market conditions in China?," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1118-1130.
    13. Arthur Charpentier & Emmanuel Flachaire & Antoine Ly, 2017. "Econom\'etrie et Machine Learning," Papers 1708.06992, arXiv.org, revised Mar 2018.
    14. Crespo, Cristian, 2020. "Two become one: improving the targeting of conditional cash transfers with a predictive model of school dropout," LSE Research Online Documents on Economics 123139, London School of Economics and Political Science, LSE Library.
    15. Ioanna Arkoudi & Carlos Lima Azevedo & Francisco C. Pereira, 2021. "Combining Discrete Choice Models and Neural Networks through Embeddings: Formulation, Interpretability and Performance," Papers 2109.12042, arXiv.org, revised Sep 2021.
    16. Lidia Ceriani & Sergio Olivieri & Marco Ranzani, 2023. "Housing, imputed rent, and household welfare," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 21(1), pages 131-168, March.
    17. Croux, Christophe & Jagtiani, Julapa & Korivi, Tarunsai & Vulanovic, Milos, 2020. "Important factors determining Fintech loan default: Evidence from a lendingclub consumer platform," Journal of Economic Behavior & Organization, Elsevier, vol. 173(C), pages 270-296.
    18. Yucheng Yang & Zhong Zheng & Weinan E, 2020. "Interpretable Neural Networks for Panel Data Analysis in Economics," Papers 2010.05311, arXiv.org, revised Nov 2020.
    19. Combes, Pierre-Philippe & Gobillon, Laurent & Zylberberg, Yanos, 2022. "Urban economics in a historical perspective: Recovering data with machine learning," Regional Science and Urban Economics, Elsevier, vol. 94(C).
    20. Arenas, Andreu & Calsamiglia, Caterina, 2022. "Gender Differences in High-Stakes Performance and College Admission Policies," IZA Discussion Papers 15550, Institute of Labor Economics (IZA).

    More about this item

    Keywords

    Immunization in India; Machine Learning; variable selection and shrinkage; LASSO;
    All these keywords.

    JEL classification:

    • O1 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ebl:ecbull:eb-18-00256. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: John P. Conley (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.