IDEAS home Printed from https://ideas.repec.org/a/diw/diwvjh/77-2-5.html
   My bibliography  Save this article

Länderclubs mit ähnlichen Innovationssystemen

Author

Listed:
  • Stephanie Schneider

Abstract

The innovation indicator Germany determines the relative positions of 17 highly developed economies in an international comparison regarding their innovation capability. Basing on that indicator countries with a similar innovation structure are grouped together. Similarity mainly refers to the innovation level of the countries, but also to their strengths and weaknesses regarding every single area of innovation capability. A hierarchic cluster analysis is used to form the groups. The result shows that there are three country clubs with a similar innovation level, whereas Germany belongs to the group that has its position in the middle and contains several countries. Furthermore, it can be differentiated between five innovation profiles. Germany has a similar profile of strengths and weaknesses like Japan, Austria and Switzerland, whereas only Switzerland belongs to the leading group concerning innovation capability. A comparison of the country clubs regarding similar absolute and relative performance can be a guideline to countries having a weaker innovation and demonstrate how a higher innovation capability can be achieved by pursuing a basically similar innovation strategy. Der Innovationsindikator Deutschland bestimmt die relative Position von 17 hochentwickelten Volkswirtschaften im internationalen Vergleich bezüglich ihrer Innovationsfähigkeit. Mithilfe dieses Indikators werden Gruppen von Ländern gebildet, die ein ähnliches Innovationssystem aufweisen. Die Ähnlichkeit bezieht sich dabei zum einen vorwiegend auf das Innovationsniveau der Länder und zum anderen auf ihre Stärken und Schwächen in den einzelnen Bereichen der Innovationsfähigkeit. Die Bildung der Gruppen erfolgt jeweils mittels einer hierarchischen Clusteranalyse. Es zeigt sich, dass drei Länderclubs mit einem ähnlichen Innovationsniveau existieren, wobei Deutschland dort zu einem mehrere Länder umfassenden Mittelfeld gehört. Ferner können fünf Innovationsprofile unterschieden werden. Deutschland hat demnach ein ähnliches Stärken- und Schwächen- Profil wie Japan, Österreich und die Schweiz, wobei nur die Schweiz zugleich zur Spitzengruppe bezüglich der Innovationsfähigkeit gehört. Eine Gegenüberstellung der Länderclubs bezüglich ähnlicher absoluter und relativer Performance kann für innovationsschwächere Länder Anhaltspunkte geben, wie sich mit einer grundsätzlich ähnlichen Innovationsstrategie eine höhere Innovationsfähigkeit erzielen lässt.

Suggested Citation

  • Stephanie Schneider, 2008. "Länderclubs mit ähnlichen Innovationssystemen," Vierteljahrshefte zur Wirtschaftsforschung / Quarterly Journal of Economic Research, DIW Berlin, German Institute for Economic Research, vol. 77(2), pages 65-78.
  • Handle: RePEc:diw:diwvjh:77-2-5
    DOI: 10.3790/vjh.77.2.65
    as

    Download full text from publisher

    File URL: https://doi.org/10.3790/vjh.77.2.65
    Download Restriction: no

    File URL: https://libkey.io/10.3790/vjh.77.2.65?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Glenn Milligan & Martha Cooper, 1985. "An examination of procedures for determining the number of clusters in a data set," Psychometrika, Springer;The Psychometric Society, vol. 50(2), pages 159-179, June.
    2. Axel Werwatz & Heike Belitz & Tanja Kirn & Jens Schmidt-Ehmcke, 2006. "Innovationsindikator Deutschland 2006," DIW Berlin: Politikberatung kompakt, DIW Berlin, German Institute for Economic Research, volume 22, number pbk22.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Pei-chen Barry & Hansen, Mark & Mukherjee, Avijit, 2008. "Scenario-based air traffic flow management: From theory to practice," Transportation Research Part B: Methodological, Elsevier, vol. 42(7-8), pages 685-702, August.
    2. Hélène Syed Zwick & S. Ali Shah Syed, 2017. "The polarization impact of the crisis on the Eurozone labour markets: a hierarchical cluster analysis," Applied Economics Letters, Taylor & Francis Journals, vol. 24(7), pages 472-476, April.
    3. Goethner, Maximilian & Hornuf, Lars & Regner, Tobias, 2021. "Protecting investors in equity crowdfunding: An empirical analysis of the small investor protection act," Technological Forecasting and Social Change, Elsevier, vol. 162(C).
    4. Pennings, J.S.J. & van Kranenburg, H.L. & Hagedoorn, J., 2005. "Past, present and future of the telecommunications industry," Research Memorandum 016, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    5. Li-Xuan Qin & Steven G. Self, 2006. "The Clustering of Regression Models Method with Applications in Gene Expression Data," Biometrics, The International Biometric Society, vol. 62(2), pages 526-533, June.
    6. Caroline Méjean & Pauline Macouillard & Sandrine Péneau & Camille Lassale & Serge Hercberg & Katia Castetbon, 2014. "Association of Perception of Front-of-Pack Labels with Dietary, Lifestyle and Health Characteristics," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-11, March.
    7. Li, Pai-Ling & Chiou, Jeng-Min, 2011. "Identifying cluster number for subspace projected functional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2090-2103, June.
    8. Luis García-González & Ángel Abós & Sergio Diloy-Peña & Alexander Gil-Arias & Javier Sevil-Serrano, 2020. "Can a Hybrid Sport Education/Teaching Games for Understanding Volleyball Unit Be More Effective in Less Motivated Students? An Examination into a Set of Motivation-Related Variables," Sustainability, MDPI, vol. 12(15), pages 1-16, July.
    9. Hyeri Choi & Min Jae Park, 2019. "Evaluating the Efficiency of Governmental Excellence for Social Progress: Focusing on Low- and Lower-Middle-Income Countries," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 141(1), pages 111-130, January.
    10. Alessandra Cepparulo & Antonello Zanfei, 2019. "The diffusion of public eServices in European cities," Working Papers 1904, University of Urbino Carlo Bo, Department of Economics, Society & Politics - Scientific Committee - L. Stefanini & G. Travaglini, revised 2019.
    11. Ana Helena Tavares & Jakob Raymaekers & Peter J. Rousseeuw & Paula Brito & Vera Afreixo, 2020. "Clustering genomic words in human DNA using peaks and trends of distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(1), pages 57-76, March.
    12. Noelia Caceres & Luis M. Romero & Francisco J. Morales & Antonio Reyes & Francisco G. Benitez, 2018. "Estimating traffic volumes on intercity road locations using roadway attributes, socioeconomic features and other work-related activity characteristics," Transportation, Springer, vol. 45(5), pages 1449-1473, September.
    13. Michele Cincera, 2005. "Firms' productivity growth and R&D spillovers: An analysis of alternative technological proximity measures," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 14(8), pages 657-682.
    14. André Lucas & Julia Schaumburg & Bernd Schwaab, 2019. "Bank Business Models at Zero Interest Rates," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(3), pages 542-555, July.
    15. Wang, Ketong & Porter, Michael D., 2018. "Optimal Bayesian clustering using non-negative matrix factorization," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 395-411.
    16. Douglas L. Steinley & M. J. Brusco, 2019. "Using an Iterative Reallocation Partitioning Algorithm to Verify Test Multidimensionality," Journal of Classification, Springer;The Classification Society, vol. 36(3), pages 397-413, October.
    17. Lin Chang-Ching & Ng Serena, 2012. "Estimation of Panel Data Models with Parameter Heterogeneity when Group Membership is Unknown," Journal of Econometric Methods, De Gruyter, vol. 1(1), pages 42-55, August.
    18. Rong, Rong & Houser, Daniel, 2015. "Growing stars: A laboratory analysis of network formation," Journal of Economic Behavior & Organization, Elsevier, vol. 117(C), pages 380-394.
    19. Javier Sevil-Serrano & Alberto Aibar-Solana & Ángel Abós & José Antonio Julián & Luis García-González, 2019. "Healthy or Unhealthy? The Cocktail of Health-Related Behavior Profiles in Spanish Adolescents," IJERPH, MDPI, vol. 16(17), pages 1-14, August.
    20. Jacques-Antoine Gauthier & Eric D. Widmer & Philipp Bucher & Cédric Notredame, 2009. "How Much Does It Cost?," Sociological Methods & Research, , vol. 38(1), pages 197-231, August.

    More about this item

    Keywords

    Innovation systems; cluster analysis; international comparsion; composite indicator;
    All these keywords.

    JEL classification:

    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives
    • O57 - Economic Development, Innovation, Technological Change, and Growth - - Economywide Country Studies - - - Comparative Studies of Countries
    • P51 - Political Economy and Comparative Economic Systems - - Comparative Economic Systems - - - Comparative Analysis of Economic Systems

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:diw:diwvjh:77-2-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bibliothek (email available below). General contact details of provider: https://edirc.repec.org/data/diwbede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.