IDEAS home Printed from https://ideas.repec.org/a/dem/demres/v36y2017i34.html
   My bibliography  Save this article

Best-practice life expectancy: An extreme value approach

Author

Listed:
  • Anthony Medford

    (Syddansk Universitet)

Abstract

Background: Whereas the rise in human life expectancy has been extensively studied, the evolution of maximum life expectancies, i.e., the rise in best-practice life expectancy in a group of populations, has not been examined to the same extent. The linear rise in best-practice life expectancy has been reported previously by various authors. Though remarkable, this is simply an empirical observation. Objective: We examine best-practice life expectancy more formally by using extreme value theory. Methods: Extreme value distributions are fit to the time series (1900 to 2012) of maximum life expectancies at birth and age 65, for both sexes, using data from the Human Mortality Database and the United Nations. Conclusions: Generalized extreme value distributions offer a theoretically justified way to model best-practice life expectancies. Using this framework one can straightforwardly obtain probability estimates of best-practice life expectancy levels or make projections about future maximum life expectancy. Comments: Our findings may be useful for policymakers and insurance/pension analysts who would like to obtain estimates and probabilities of future maximum life expectancies.

Suggested Citation

  • Anthony Medford, 2017. "Best-practice life expectancy: An extreme value approach," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 36(34), pages 989-1014.
  • Handle: RePEc:dem:demres:v:36:y:2017:i:34
    DOI: 10.4054/DemRes.2017.36.34
    as

    Download full text from publisher

    File URL: https://www.demographic-research.org/volumes/vol36/34/36-34.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.4054/DemRes.2017.36.34?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jacques Vallin & France Meslé, 2009. "The Segmented Trend Line of Highest Life Expectancies," Population and Development Review, The Population Council, Inc., vol. 35(1), pages 159-187, March.
    2. Ryan D. Edwards & Shripad Tuljapurkar, 2005. "Inequality in Life Spans and a New Perspective on Mortality Convergence Across Industrialized Countries," Population and Development Review, The Population Council, Inc., vol. 31(4), pages 645-674, December.
    3. Chris Wilson, 2011. "Understanding Global Demographic Convergence since 1950," Population and Development Review, The Population Council, Inc., vol. 37(2), pages 375-388, June.
    4. Kirill F. Andreev & James W. Vaupel, 2006. "Forecasts of cohort mortality after age 50," MPIDR Working Papers WP-2006-012, Max Planck Institute for Demographic Research, Rostock, Germany.
    5. Johnny Siu-Hang Li & Mary Hardy & Ken Seng Tan, 2008. "Threshold Life Tables and Their Applications," North American Actuarial Journal, Taylor & Francis Journals, vol. 12(2), pages 99-115.
    6. Robert B. Davies, 2002. "Hypothesis testing when a nuisance parameter is present only under the alternative: Linear model case," Biometrika, Biometrika Trust, vol. 89(2), pages 484-489, June.
    7. Torri, Tiziana & Vaupel, James W., 2012. "Forecasting life expectancy in an international context," International Journal of Forecasting, Elsevier, vol. 28(2), pages 519-531.
    8. Kathryn Watts & Debbie Dupuis & Bruce Jones, 2006. "An Extreme Value Analysis Of Advanced Age Mortality Data," North American Actuarial Journal, Taylor & Francis Journals, vol. 10(4), pages 162-178.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alvarez, Jesús-Adrián & Kallestrup-Lamb, Malene & Kjærgaard, Søren, 2021. "Linking retirement age to life expectancy does not lessen the demographic implications of unequal lifespans," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 363-375.
    2. Anthony Medford, 2021. "Modeling Best Practice Life Expectancy Using Gumbel Autoregressive Models," Risks, MDPI, vol. 9(3), pages 1-10, March.
    3. Anthony Medford & James W. Vaupel, 2020. "Extremes are not normal: a reminder to demographers," Journal of Population Research, Springer, vol. 37(1), pages 91-106, March.
    4. Jia Liu & Jackie Li, 2019. "Beyond the highest life expectancy: construction of proxy upper and lower life expectancy bounds," Journal of Population Research, Springer, vol. 36(2), pages 159-181, June.
    5. Jackie Li & Jia Liu, 2020. "A modified extreme value perspective on best-performance life expectancy," Journal of Population Research, Springer, vol. 37(4), pages 345-375, December.
    6. Anthony Medford & Kaare Christensen & Axel Skytthe & James W. Vaupel, 2019. "A Cohort Comparison of Lifespan After Age 100 in Denmark and Sweden: Are Only the Oldest Getting Older?," Demography, Springer;Population Association of America (PAA), vol. 56(2), pages 665-677, April.
    7. Jesús-Adrián Álvarez & Malene Kallestrup-Lamb & Søren Kjærgaard, 2020. "Linking retirement age to life expectancy does not lessen the demographic implications of unequal lifespans," CREATES Research Papers 2020-17, Department of Economics and Business Economics, Aarhus University.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jackie Li & Jia Liu, 2020. "A modified extreme value perspective on best-performance life expectancy," Journal of Population Research, Springer, vol. 37(4), pages 345-375, December.
    2. Anthony Medford & James W. Vaupel, 2020. "Extremes are not normal: a reminder to demographers," Journal of Population Research, Springer, vol. 37(1), pages 91-106, March.
    3. Marie-Pier Bergeron-Boucher & Vladimir Canudas-Romo & James E. Oeppen & James W. Vaupel, 2017. "Coherent forecasts of mortality with compositional data analysis," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 37(17), pages 527-566.
    4. Adrian Raftery & Jennifer Chunn & Patrick Gerland & Hana Ševčíková, 2013. "Bayesian Probabilistic Projections of Life Expectancy for All Countries," Demography, Springer;Population Association of America (PAA), vol. 50(3), pages 777-801, June.
    5. Michal Engelman & Vladimir Canudas‐Romo & Emily M. Agree, 2010. "The Implications of Increased Survivorship for Mortality Variation in Aging Populations," Population and Development Review, The Population Council, Inc., vol. 36(3), pages 511-539, September.
    6. Sulekha Hembram & Sushil Kr. Haldar, 2020. "Is India experiencing health convergence? An empirical analysis," Economic Change and Restructuring, Springer, vol. 53(4), pages 591-618, November.
    7. Hong Li & Yang Lu & Pintao Lyu, 2021. "Coherent Mortality Forecasting for Less Developed Countries," Risks, MDPI, vol. 9(9), pages 1-21, August.
    8. Gbari, Kock Yed Ake Samuel & Poulain, Michel & Dal, Luc & Denuit, Michel, 2016. "Extreme value analysis of mortality at the oldest ages: a case study based on individual ages at death," LIDAM Discussion Papers ISBA 2016012, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    9. Jia Liu & Jackie Li, 2019. "Beyond the highest life expectancy: construction of proxy upper and lower life expectancy bounds," Journal of Population Research, Springer, vol. 36(2), pages 159-181, June.
    10. Pascariu, Marius D. & Canudas-Romo, Vladimir & Vaupel, James W., 2018. "The double-gap life expectancy forecasting model," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 339-350.
    11. Liou, Lathan & Joe, William & Kumar, Abhishek & Subramanian, S.V., 2020. "Inequalities in life expectancy: An analysis of 201 countries, 1950–2015," Social Science & Medicine, Elsevier, vol. 253(C).
    12. Bergeron-Boucher, Marie-Pier & Vázquez-Castillo, Paola & Missov, Trifon, 2022. "A modal age at death approach to forecasting mortality," SocArXiv 5zr2k, Center for Open Science.
    13. Torri, Tiziana & Vaupel, James W., 2012. "Forecasting life expectancy in an international context," International Journal of Forecasting, Elsevier, vol. 28(2), pages 519-531.
    14. Marie-Pier Bergeron-Boucher & Marcus Ebeling & Vladimir Canudas-Romo, 2015. "Decomposing changes in life expectancy: Compression versus shifting mortality," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 33(14), pages 391-424.
    15. Huang, Fei & Maller, Ross & Ning, Xu, 2020. "Modelling life tables with advanced ages: An extreme value theory approach," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 95-115.
    16. Andrea Nigri & Elisabetta Barbi & Susanna Levantesi, 2022. "The relay for human longevity: country-specific contributions to the increase of the best-practice life expectancy," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(6), pages 4061-4073, December.
    17. Andrea Nigri & Elisabetta Barbi & Susanna Levantesi, 2022. "The relationship between longevity and lifespan variation," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(3), pages 481-493, September.
    18. Booth, Heather, 2006. "Demographic forecasting: 1980 to 2005 in review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 547-581.
    19. Henry, Olan T. & Olekalns, Nilss & Suardi, Sandy, 2007. "Testing for rate dependence and asymmetry in inflation uncertainty: Evidence from the G7 economies," Economics Letters, Elsevier, vol. 94(3), pages 383-388, March.
    20. Jon Anson, 2010. "Beyond Material Explanations: Family Solidarity and Mortality, a Small Area‐level Analysis," Population and Development Review, The Population Council, Inc., vol. 36(1), pages 27-45, March.

    More about this item

    Keywords

    life expectancy; best-practice life expectancy; projecting best-practice life expectancy; extreme value theory; generalised extreme value distribution; innovations process;
    All these keywords.

    JEL classification:

    • J1 - Labor and Demographic Economics - - Demographic Economics
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dem:demres:v:36:y:2017:i:34. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Editorial Office (email available below). General contact details of provider: https://www.demogr.mpg.de/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.