IDEAS home Printed from https://ideas.repec.org/a/dem/demres/v18y2008i3.html
   My bibliography  Save this article

Perturbation analysis of nonlinear matrix population models

Author

Listed:
  • Hal Caswell

    (Universiteit van Amsterdam)

Abstract

Perturbation analysis examines the response of a model to changes in its parameters. It is commonly applied to population growth rates calculated from linear models, but there has been no general approach to the analysis of nonlinear models. Nonlinearities in demographic models may arise due to density-dependence, frequency-dependence (in 2-sex models), feedback through the environment or the economy, and recruitment subsidy due to immigration, or from the scaling inherent in calculations of proportional population structure. This paper uses matrix calculus to derive the sensitivity and elasticity of equilibria, cycles, ratios (e.g. dependency ratios), age averages and variances, temporal averages and variances, life expectancies, and population growth rates, for both age-classified and stage-classified models. Examples are presented, applying the results to both human and non-human populations.

Suggested Citation

  • Hal Caswell, 2008. "Perturbation analysis of nonlinear matrix population models," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 18(3), pages 59-116.
  • Handle: RePEc:dem:demres:v:18:y:2008:i:3
    DOI: 10.4054/DemRes.2008.18.3
    as

    Download full text from publisher

    File URL: https://www.demographic-research.org/volumes/vol18/3/18-3.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.4054/DemRes.2008.18.3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barabás, György & Meszéna, Géza & Ostling, Annette, 2014. "Fixed point sensitivity analysis of interacting structured populations," Theoretical Population Biology, Elsevier, vol. 92(C), pages 97-106.
    2. Hal Caswell, 2014. "A matrix approach to the statistics of longevity in heterogeneous frailty models," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 31(19), pages 553-592.
    3. Tomasz Wrycza & Annette Baudisch, 2012. "How life expectancy varies with perturbations in age-specific mortality," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 27(13), pages 365-376.
    4. de Vries, Charlotte & Desharnais, Robert A. & Caswell, Hal, 2020. "A matrix model for density-dependent selection in stage-classified populations, with application to pesticide resistance in Tribolium," Ecological Modelling, Elsevier, vol. 416(C).
    5. Oli, Madan K. & Loughry, W.J. & Caswell, Hal & Perez-Heydrich, Carolina & McDonough, Colleen M. & Truman, Richard W., 2017. "Dynamics of leprosy in nine-banded armadillos: Net reproductive number and effects on host population dynamics," Ecological Modelling, Elsevier, vol. 350(C), pages 100-108.
    6. Alyson Raalte & Hal Caswell, 2013. "Perturbation Analysis of Indices of Lifespan Variability," Demography, Springer;Population Association of America (PAA), vol. 50(5), pages 1615-1640, October.
    7. Boyce, Mark S. & Baxter, Peter W.J. & Possingham, Hugh P., 2012. "Managing moose harvests by the seat of your pants," Theoretical Population Biology, Elsevier, vol. 82(4), pages 340-347.
    8. Hal Caswell & Xi Song, 2021. "The formal demography of kinship III: Kinship dynamics with time-varying demographic rates," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 45(16), pages 517-546.
    9. Michal Engelman & Hal Caswell & Emily Agree, 2014. "Why do lifespan variability trends for the young and old diverge? A perturbation analysis," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 30(48), pages 1367-1396.
    10. Hal Caswell & Nora Sánchez Gassen, 2015. "The sensitivity analysis of population projections," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 33(28), pages 801-840.
    11. Karsten, Richard & Teismann, Holger & Vogels, Angela, 2013. "Reproductive value, sensitivity, and nonlinearity: Population-management heuristics derived from classical demography," Theoretical Population Biology, Elsevier, vol. 85(C), pages 20-25.
    12. Lee, Charlotte T. & Tuljapurkar, Shripad, 2008. "Population and prehistory I: Food-dependent population growth in constant environments," Theoretical Population Biology, Elsevier, vol. 73(4), pages 473-482.
    13. Haridas, C.V. & Eager, Eric Alan & Rebarber, Richard & Tenhumberg, Brigitte, 2014. "Frequency-dependent population dynamics: Effect of sex ratio and mating system on the elasticity of population growth rate," Theoretical Population Biology, Elsevier, vol. 97(C), pages 49-56.
    14. Hal Caswell, 2019. "The formal demography of kinship: A matrix formulation," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 41(24), pages 679-712.
    15. Caswell, Hal & Shyu, Esther, 2012. "Sensitivity analysis of periodic matrix population models," Theoretical Population Biology, Elsevier, vol. 82(4), pages 329-339.
    16. Coste, Christophe F.D. & Austerlitz, Frédéric & Pavard, Samuel, 2017. "Trait level analysis of multitrait population projection matrices," Theoretical Population Biology, Elsevier, vol. 116(C), pages 47-58.

    More about this item

    Keywords

    immigration; matrix population models; density dependence; homeostasis; sensitivity analysis; elasticity; matrix calculus; dependency ratios; two-sex models; Tribolium; barnacles; population cycles;
    All these keywords.

    JEL classification:

    • J1 - Labor and Demographic Economics - - Demographic Economics
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dem:demres:v:18:y:2008:i:3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Editorial Office (email available below). General contact details of provider: https://www.demogr.mpg.de/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.