IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v237y2023i2s0304407623002336.html
   My bibliography  Save this article

What is a standard error? (And how should we compute it?)

Author

Listed:
  • Wooldridge, Jeffrey M.

Abstract

I review the definition of a standard error from a frequentist perspective, including both exact analysis and asymptotic analysis. Using the linear model for illustration, I discuss the model-based, design-based, and sampling-based approaches to uncertainty in obtaining standard errors. The model-based approach is widely applicable and produces reasonable measures of estimator precision in many settings. In some situations, particularly in the context of clustering, the model-based approach can suffer from ambiguity, and can lead to standard errors that are systematically biased. A combination of the design-based and sampling-based approaches requires the researcher to think about the variation in key explanatory variables when computing standard errors, and it can even apply to cases where the entire population is observed.

Suggested Citation

  • Wooldridge, Jeffrey M., 2023. "What is a standard error? (And how should we compute it?)," Journal of Econometrics, Elsevier, vol. 237(2).
  • Handle: RePEc:eee:econom:v:237:y:2023:i:2:s0304407623002336
    DOI: 10.1016/j.jeconom.2023.105517
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407623002336
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2023.105517?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. MacKinnon, James G. & Nielsen, Morten Ørregaard & Webb, Matthew D., 2023. "Cluster-robust inference: A guide to empirical practice," Journal of Econometrics, Elsevier, vol. 232(2), pages 272-299.
    3. Alberto Abadie & Susan Athey & Guido W Imbens & Jeffrey M Wooldridge, 2023. "When Should You Adjust Standard Errors for Clustering?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 138(1), pages 1-35.
    4. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, April.
    5. Ruonan Xu & Jeffrey M. Wooldridge, 2022. "A Design-Based Approach to Spatial Correlation," Papers 2211.14354, arXiv.org.
    6. John C. Driscoll & Aart C. Kraay, 1998. "Consistent Covariance Matrix Estimation With Spatially Dependent Panel Data," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 549-560, November.
    7. Hansen, Christian B., 2007. "Asymptotic properties of a robust variance matrix estimator for panel data when T is large," Journal of Econometrics, Elsevier, vol. 141(2), pages 597-620, December.
    8. Ruonan Xu, 2021. "Potential outcomes and finite-population inference for M-estimators," The Econometrics Journal, Royal Economic Society, vol. 24(1), pages 162-176.
    9. Hansen, Bruce E. & Lee, Seojeong, 2019. "Asymptotic theory for clustered samples," Journal of Econometrics, Elsevier, vol. 210(2), pages 268-290.
    10. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    11. MacKinnon, James G. & White, Halbert, 1985. "Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties," Journal of Econometrics, Elsevier, vol. 29(3), pages 305-325, September.
    12. Conley, T. G., 1999. "GMM estimation with cross sectional dependence," Journal of Econometrics, Elsevier, vol. 92(1), pages 1-45, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bellocca, Gian Pietro Enzo & Poncela Blanco, Maria Pilar, 2024. "Extreme temperatures and the profitability of large European firms," DES - Working Papers. Statistics and Econometrics. WS 44217, Universidad Carlos III de Madrid. Departamento de Estadística.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jushan Bai & Sung Hoon Choi & Yuan Liao, 2021. "Feasible generalized least squares for panel data with cross-sectional and serial correlations," Empirical Economics, Springer, vol. 60(1), pages 309-326, January.
    2. Bai, Jushan & Choi, Sung Hoon & Liao, Yuan, 2024. "Standard errors for panel data models with unknown clusters," Journal of Econometrics, Elsevier, vol. 240(2).
    3. Pakel, Cavit, 2019. "Bias reduction in nonlinear and dynamic panels in the presence of cross-section dependence," Journal of Econometrics, Elsevier, vol. 213(2), pages 459-492.
    4. Kim, Min Seong & Sun, Yixiao, 2013. "Heteroskedasticity and spatiotemporal dependence robust inference for linear panel models with fixed effects," Journal of Econometrics, Elsevier, vol. 177(1), pages 85-108.
    5. James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2021. "Wild Bootstrap and Asymptotic Inference With Multiway Clustering," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 505-519, March.
    6. Vogelsang, Timothy J., 2012. "Heteroskedasticity, autocorrelation, and spatial correlation robust inference in linear panel models with fixed-effects," Journal of Econometrics, Elsevier, vol. 166(2), pages 303-319.
    7. MacKinnon, James G. & Nielsen, Morten Ørregaard & Webb, Matthew D., 2023. "Cluster-robust inference: A guide to empirical practice," Journal of Econometrics, Elsevier, vol. 232(2), pages 272-299.
    8. James G. MacKinnon, 2012. "Thirty Years Of Heteroskedasticity-robust Inference," Working Paper 1268, Economics Department, Queen's University.
    9. David Powell, 2017. "Inference with Correlated Clusters," Working Papers WR-1137-1, RAND Corporation.
    10. Ladislava Grochová & Luboš Střelec, 2013. "Heteroskedasticity, temporal and spatial correlation matter," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 61(7), pages 2151-2155.
    11. A. Colin Cameron & Douglas L. Miller, 2010. "Robust Inference with Clustered Data," Working Papers 318, University of California, Davis, Department of Economics.
    12. MacKinnon, James G. & Nielsen, Morten Ørregaard & Webb, Matthew D., 2023. "Testing for the appropriate level of clustering in linear regression models," Journal of Econometrics, Elsevier, vol. 235(2), pages 2027-2056.
    13. Jesse B. Tack & Rulon D. Pope & Jeffrey T. LaFrance & Ricardo H. Cavazos, 2015. "Modelling an aggregate agricultural panel with application to US farm input demands," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 42(3), pages 371-396.
    14. James G. MacKinnon & Matthew D. Webb, 2020. "When and How to Deal with Clustered Errors in Regression Models," Working Paper 1421, Economics Department, Queen's University.
    15. A. Colin Cameron & Douglas L. Miller, 2010. "Robust Inference with Clustered Data," Working Papers 106, University of California, Davis, Department of Economics.
    16. Vasilis Sarafidis & Tom Wansbeek, 2012. "Cross-Sectional Dependence in Panel Data Analysis," Econometric Reviews, Taylor & Francis Journals, vol. 31(5), pages 483-531, September.
    17. A. Colin Cameron & Douglas L. Miller, 2015. "A Practitioner’s Guide to Cluster-Robust Inference," Journal of Human Resources, University of Wisconsin Press, vol. 50(2), pages 317-372.
    18. Rho, Seunghwa & Vogelsang, Timothy J., 2021. "Inference in time series models using smoothed-clustered standard errors," Journal of Econometrics, Elsevier, vol. 224(1), pages 113-133.
    19. Moscone, F. & Tosetti, Elisa, 2015. "Robust estimation under error cross section dependence," Economics Letters, Elsevier, vol. 133(C), pages 100-104.
    20. Sun, Yu & Yan, Karen X., 2019. "Inference on Difference-in-Differences average treatment effects: A fixed-b approach," Journal of Econometrics, Elsevier, vol. 211(2), pages 560-588.

    More about this item

    Keywords

    Standard error; Model-based approach; Design-based approach; Sampling-based approach; Clustering;
    All these keywords.

    JEL classification:

    • C20 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:237:y:2023:i:2:s0304407623002336. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.