IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v31y2015i05p1102-1116_00.html
   My bibliography  Save this article

What Do Quantile Regressions Identify For General Structural Functions?

Author

Listed:
  • Sasaki, Yuya

Abstract

This paper shows what quantile regressions identify for general structural functions. Under fairly mild conditions, the quantile partial derivative identifies a weighted average of heterogeneous structural partial effects among the subpopulation of individuals at the conditional quantile of interest. This result justifies the use of quantile regressions as means of measuring heterogeneous causal effects for a general class of structural functions with multiple unobservables.

Suggested Citation

  • Sasaki, Yuya, 2015. "What Do Quantile Regressions Identify For General Structural Functions?," Econometric Theory, Cambridge University Press, vol. 31(5), pages 1102-1116, October.
  • Handle: RePEc:cup:etheor:v:31:y:2015:i:05:p:1102-1116_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466614000711/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731, January.
    2. Stefan Hoderlein & Enno Mammen, 2007. "Identification of Marginal Effects in Nonseparable Models Without Monotonicity," Econometrica, Econometric Society, vol. 75(5), pages 1513-1518, September.
    3. Sen, Amartya, 1985. "A Sociological Approach to the Measurement of Poverty: A Reply [Poor, Relatively Speaking]," Oxford Economic Papers, Oxford University Press, vol. 37(4), pages 669-676, December.
    4. Roger Koenker & Kevin F. Hallock, 2001. "Quantile Regression," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 143-156, Fall.
    5. Joshua Angrist & Victor Chernozhukov & Iván Fernández-Val, 2006. "Quantile Regression under Misspecification, with an Application to the U.S. Wage Structure," Econometrica, Econometric Society, vol. 74(2), pages 539-563, March.
    6. James J. Heckman, 2007. "The Economics, Technology and Neuroscience of Human Capability Formation," NBER Working Papers 13195, National Bureau of Economic Research, Inc.
    7. Guido W. Imbens & Whitney K. Newey, 2009. "Identification and Estimation of Triangular Simultaneous Equations Models Without Additivity," Econometrica, Econometric Society, vol. 77(5), pages 1481-1512, September.
    8. Xavier d'Haultfoeuille & Philippe Février, 2011. "Identification of Nonseparable Modes with Endogeneity and Discrete Instruments," Working Papers 2011-28, Center for Research in Economics and Statistics.
    9. Andrew Chesher, 2003. "Identification in Nonseparable Models," Econometrica, Econometric Society, vol. 71(5), pages 1405-1441, September.
    10. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    11. Victor Chernozhukov & Christian Hansen, 2005. "An IV Model of Quantile Treatment Effects," Econometrica, Econometric Society, vol. 73(1), pages 245-261, January.
    12. Schennach, Susanne M., 2008. "Quantile Regression With Mismeasured Covariates," Econometric Theory, Cambridge University Press, vol. 24(4), pages 1010-1043, August.
    13. Chernozhukov, Victor & Imbens, Guido W. & Newey, Whitney K., 2007. "Instrumental variable estimation of nonseparable models," Journal of Econometrics, Elsevier, vol. 139(1), pages 4-14, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matthew A. Masten & Alexandre Poirier, 2018. "Interpreting Quantile Independence," Papers 1804.10957, arXiv.org.
    2. Chernozhukov, Victor & Fernández-Val, Iván & Newey, Whitney K., 2019. "Nonseparable multinomial choice models in cross-section and panel data," Journal of Econometrics, Elsevier, vol. 211(1), pages 104-116.
    3. Ruofan Xu & Jiti Gao & Tatsushi Oka & Yoon-Jae Whang, 2022. "Quantile Random-Coefficient Regression with Interactive Fixed Effects: Heterogeneous Group-Level Policy Evaluation," Papers 2208.03632, arXiv.org, revised Nov 2024.
    4. Ying-Ying Lee, 2015. "Interpretation and Semiparametric Efficiency in Quantile Regression under Misspecification," Econometrics, MDPI, vol. 4(1), pages 1-14, December.
    5. Su, Liangjun & Ura, Takuya & Zhang, Yichong, 2019. "Non-separable models with high-dimensional data," Journal of Econometrics, Elsevier, vol. 212(2), pages 646-677.
    6. Chalak, Karim, 2019. "A note on the robustness of quantile treatment effect estimands," Economics Letters, Elsevier, vol. 185(C).
    7. Victor Chernozhukov & Iván Fernández‐Val & Ye Luo, 2018. "The Sorted Effects Method: Discovering Heterogeneous Effects Beyond Their Averages," Econometrica, Econometric Society, vol. 86(6), pages 1911-1938, November.
    8. Creemers, Sarah & Peeters, Ludo & Quiroz Castillo, Juan Luis & Vancauteren, Mark & Voordeckers, Wim, 2023. "Family firms and the labor productivity controversy: A distributional analysis of varying labor productivity gaps," Journal of Family Business Strategy, Elsevier, vol. 14(2).
    9. Xie, Haitian, 2024. "Nonlinear and nonseparable structural functions in regression discontinuity designs with a continuous treatment," Journal of Econometrics, Elsevier, vol. 242(1).
    10. Chiang, Harold D. & Sasaki, Yuya, 2019. "Causal inference by quantile regression kink designs," Journal of Econometrics, Elsevier, vol. 210(2), pages 405-433.
    11. Ruofan Xu & Jiti Gao & Tatsushi Oka & Yoon-Jae Whang, 2022. "Estimation of Heterogeneous Treatment Effects Using Quantile Regression with Interactive Fixed Effects," Monash Econometrics and Business Statistics Working Papers 13/22, Monash University, Department of Econometrics and Business Statistics.
    12. David M. Kaplan, 2014. "Nonparametric Inference on Quantile Marginal Effects," Working Papers 1413, Department of Economics, University of Missouri.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muller, Christophe, 2018. "Heterogeneity and nonconstant effect in two-stage quantile regression," Econometrics and Statistics, Elsevier, vol. 8(C), pages 3-12.
    2. Rothe, Christoph, 2010. "Identification of unconditional partial effects in nonseparable models," Economics Letters, Elsevier, vol. 109(3), pages 171-174, December.
    3. Denis Chetverikov & Bradley Larsen & Christopher Palmer, 2016. "IV Quantile Regression for Group‐Level Treatments, With an Application to the Distributional Effects of Trade," Econometrica, Econometric Society, vol. 84, pages 809-833, March.
    4. Blundell, Richard & Kristensen, Dennis & Matzkin, Rosa, 2014. "Bounding quantile demand functions using revealed preference inequalities," Journal of Econometrics, Elsevier, vol. 179(2), pages 112-127.
    5. Zequn Jin & Lihua Lin & Zhengyu Zhang, 2022. "Identification and Auto-debiased Machine Learning for Outcome Conditioned Average Structural Derivatives," Papers 2211.07903, arXiv.org.
    6. DePaula, Guilherme, 2020. "The distributional effect of climate change on agriculture: Evidence from a Ricardian quantile analysis of Brazilian census data," Journal of Environmental Economics and Management, Elsevier, vol. 104(C).
    7. Victor Chernozhukov & Iván Fernández‐Val & Blaise Melly, 2013. "Inference on Counterfactual Distributions," Econometrica, Econometric Society, vol. 81(6), pages 2205-2268, November.
    8. Christophe Muller, 2019. "Linear Quantile Regression and Endogeneity Correction," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 9(5), pages 123-128, August.
    9. Halbert White & Karim Chalak, 2013. "Identification and Identification Failure for Treatment Effects Using Structural Systems," Econometric Reviews, Taylor & Francis Journals, vol. 32(3), pages 273-317, November.
    10. Schennach, Susanne & White, Halbert & Chalak, Karim, 2012. "Local indirect least squares and average marginal effects in nonseparable structural systems," Journal of Econometrics, Elsevier, vol. 166(2), pages 282-302.
    11. Stefan Hoderlein & Yuya Sasaki, 2013. "Outcome Conditioned Treatment Effects," Boston College Working Papers in Economics 840, Boston College Department of Economics.
    12. Pereda-Fernández, Santiago, 2023. "Identification and estimation of triangular models with a binary treatment," Journal of Econometrics, Elsevier, vol. 234(2), pages 585-623.
    13. Kaspar W thrich, 2015. "Semiparametric estimation of quantile treatment effects with endogeneity," Diskussionsschriften dp1509, Universitaet Bern, Departement Volkswirtschaft.
    14. Chernozhukov, Victor & Hansen, Christian & Jansson, Michael, 2009. "Finite sample inference for quantile regression models," Journal of Econometrics, Elsevier, vol. 152(2), pages 93-103, October.
    15. Joseph G. Altonji & Hidehiko Ichimura & Taisuke Otsu, 2012. "Estimating Derivatives in Nonseparable Models With Limited Dependent Variables," Econometrica, Econometric Society, vol. 80(4), pages 1701-1719, July.
    16. Victor Chernozhukov & Christian Hansen & Kaspar Wuthrich, 2020. "Instrumental Variable Quantile Regression," Papers 2009.00436, arXiv.org.
    17. Kasy, Maximilian, "undated". "Instrumental variables with unrestricted heterogeneity and continuous treatment - DON'T CITE! SEE ERRATUM BELOW," Working Paper 33257, Harvard University OpenScholar.
    18. Escanciano, J.C. & Goh, S.C., 2014. "Specification analysis of linear quantile models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 495-507.
    19. Matzkin, Rosa L., 2016. "On independence conditions in nonseparable models: Observable and unobservable instruments," Journal of Econometrics, Elsevier, vol. 191(2), pages 302-311.
    20. Jayeeta Bhattacharya, 2020. "Quantile regression with generated dependent variable and covariates," Papers 2012.13614, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:31:y:2015:i:05:p:1102-1116_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.