IDEAS home Printed from https://ideas.repec.org/a/csb/stintr/v11y2010i3p503-516.html
   My bibliography  Save this article

Small Area Estimation Under a Mixture Model

Author

Listed:
  • U C Sud
  • Hukum Chandra
  • HVL Bathla

Abstract

Small area estimation (SAE) under a linear mixed model may not be efficient if data contain substantial proportion of zeros than would be expected under standard model assumptions (hereafter zero-inflated data). We discuss the SAE for zero-inflated data under a mixture model (Fletcher et al., 2005 and Karlberg, 2000) that account for excess zeros in the data. Our results from simulation studies show that mixture model based approach for SAE works well and produces an efficient set of small area estimates. An application to real survey data from the National Sample Survey Organisation of India demonstrates the satisfactory performance of the approach.

Suggested Citation

  • U C Sud & Hukum Chandra & HVL Bathla, 2010. "Small Area Estimation Under a Mixture Model," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 11(3), pages 503-516, December.
  • Handle: RePEc:csb:stintr:v:11:y:2010:i:3:p:503-516
    as

    Download full text from publisher

    File URL: http://index.stat.gov.pl/repec/files/csb/stintr/csb_stintr_v11_2010_i3_n4.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gonzalez-Manteiga, W. & Lombardia, M.J. & Molina, I. & Morales, D. & Santamaria, L., 2007. "Estimation of the mean squared error of predictors of small area linear parameters under a logistic mixed model," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2720-2733, February.
    2. Jiang, Jiming & Lahiri, P., 2006. "Estimation of Finite Population Domain Means: A Model-Assisted Empirical Best Prediction Approach," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 301-311, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Isabel Molina & Ewa Strzalkowska‐Kominiak, 2020. "Estimation of proportions in small areas: application to the labour force using the Swiss Census Structural Survey," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(1), pages 281-310, January.
    2. María Dolores Esteban & María José Lombardía & Esther López-Vizcaíno & Domingo Morales & Agustín Pérez, 2020. "Small area estimation of proportions under area-level compositional mixed models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(3), pages 793-818, September.
    3. G. Bertarelli & R. Chambers & N. Salvati, 2021. "Outlier robust small domain estimation via bias correction and robust bootstrapping," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 331-357, March.
    4. Piyush Kant Rai & Sarla Pareek & Hemlata Joshi, 2017. "Met And Unmet Need For Contraception: Small Area Estimation For Rajasthan State Of India," Statistics in Transition New Series, Polish Statistical Association, vol. 18(2), pages 329-360, June.
    5. Miguel Boubeta & María José Lombardía & Domingo Morales, 2016. "Empirical best prediction under area-level Poisson mixed models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(3), pages 548-569, September.
    6. Hukum Chandra, 2021. "District-Level Estimates of Poverty Incidence for the State of West Bengal in India: Application of Small Area Estimation Technique Combining NSSO Survey and Census Data," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(2), pages 375-391, June.
    7. Marisa Bottiroli Civardi & Renata Targetti Lenti, 2008. "Multiplier Decomposition, Inequality and Poverty in a SAM Framework," Rivista di statistica ufficiale, ISTAT - Italian National Institute of Statistics - (Rome, ITALY), vol. 10(1), pages 31-57, October.
    8. Ralf Münnich & Jan Pablo Burgard & Siegfried Gabler & Matthias Ganninger & Jan-Philipp Kolb, 2016. "Small Area Estimation In The German Census 2011," Statistics in Transition New Series, Polish Statistical Association, vol. 17(1), pages 25-40, March.
    9. Żądło Tomasz, 2017. "On Asymmetry of Prediction Errors in Small Area Estimation," Statistics in Transition New Series, Statistics Poland, vol. 18(3), pages 413-432, September.
    10. Karlberg Forough, 2015. "Small Area Estimation for Skewed Data in the Presence of Zeroes," Statistics in Transition New Series, Statistics Poland, vol. 16(4), pages 541-562, December.
    11. Tomasz Ża̧dło, 2015. "On longitudinal moving average model for prediction of subpopulation total," Statistical Papers, Springer, vol. 56(3), pages 749-771, August.
    12. Wang, Jianqiang C., 2012. "Sample distribution function based goodness-of-fit test for complex surveys," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 664-679.
    13. Guadarrama, María & Molina, Isabel & Rao, J.N.K., 2018. "Small area estimation of general parameters under complex sampling designs," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 20-40.
    14. M. D. Ugarte & A. F. Militino & T. Goicoa, 2008. "Adjusting economic estimates in business surveys," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(11), pages 1253-1265.
    15. Forough Karlberg, 2015. "Small Area Estimation For Skewed Data In The Presence Of Zeroes," Statistics in Transition New Series, Polish Statistical Association, vol. 16(4), pages 541-562, December.
    16. Angelo Moretti, 2023. "Estimation of small area proportions under a bivariate logistic mixed model," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(4), pages 3663-3684, August.
    17. Żądło Tomasz, 2020. "On Accuracy Estimation Using Parametric Bootstrap in small Area Prediction Problems," Journal of Official Statistics, Sciendo, vol. 36(2), pages 435-458, June.
    18. Molina, Isabel & Salvati, Nicola & Pratesi, Monica, 2007. "Bootstrap for estimating the mean squared error of the spatial EBLUP," DES - Working Papers. Statistics and Econometrics. WS ws073408, Universidad Carlos III de Madrid. Departamento de Estadística.
    19. repec:csb:stintr:v:17:y:2016:i:1:p:25-40 is not listed on IDEAS
    20. María Dolores Esteban & María José Lombardía & Esther López‐Vizcaíno & Domingo Morales & Agustín Pérez, 2022. "Empirical best prediction of small area bivariate parameters," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(4), pages 1699-1727, December.
    21. Boubeta, Miguel & Lombardía, María José & Morales, Domingo, 2017. "Poisson mixed models for studying the poverty in small areas," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 32-47.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:csb:stintr:v:11:y:2010:i:3:p:503-516. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Beata Witek (email available below). General contact details of provider: https://edirc.repec.org/data/gusgvpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.