IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v121y2018icp20-40.html
   My bibliography  Save this article

Small area estimation of general parameters under complex sampling designs

Author

Listed:
  • Guadarrama, María
  • Molina, Isabel
  • Rao, J.N.K.

Abstract

When the probabilities of selecting individuals (units) for the sample depend on the outcome values, the selection mechanism is said to be informative. Under informative selection, individuals with certain outcome values appear more often in the sample and, as a consequence, usual inference based on the actual sample without appropriate weighting might be strongly biased. An extension of the empirical best (EB) method for estimation of general non-linear parameters in small areas that handles informative selection by incorporating the sampling weights is proposed. Properties of this new method under complex sampling designs, including informative selection, are analyzed. Results confirm that the proposed weighted estimators significantly reduce the bias of unweighted EB estimators under informative sampling, and compare favorably under non-informative sampling. The proposed method is illustrated through an application to poverty mapping in a State from Mexico.

Suggested Citation

  • Guadarrama, María & Molina, Isabel & Rao, J.N.K., 2018. "Small area estimation of general parameters under complex sampling designs," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 20-40.
  • Handle: RePEc:eee:csdana:v:121:y:2018:i:c:p:20-40
    DOI: 10.1016/j.csda.2017.11.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947317302517
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2017.11.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Foster, James & Greer, Joel & Thorbecke, Erik, 1984. "A Class of Decomposable Poverty Measures," Econometrica, Econometric Society, vol. 52(3), pages 761-766, May.
    2. María Guadarrama & Isabel Molina & J. N. K. Rao, 2016. "A Comparison Of Small Area Estimation Methods For Poverty Mapping," Statistics in Transition New Series, Polish Statistical Association, vol. 17(1), pages 41-66, March.
    3. repec:csb:stintr:v:17:y:2016:i:1:p:41-66 is not listed on IDEAS
    4. Pfeffermann, Danny & Sverchkov, Michail, 2007. "Small-Area Estimation Under Informative Probability Sampling of Areas and Within the Selected Areas," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1427-1439, December.
    5. Chris Elbers & Jean O. Lanjouw & Peter Lanjouw, 2003. "Micro--Level Estimation of Poverty and Inequality," Econometrica, Econometric Society, vol. 71(1), pages 355-364, January.
    6. Jiang, Jiming & Lahiri, P., 2006. "Estimation of Finite Population Domain Means: A Model-Assisted Empirical Best Prediction Approach," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 301-311, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Corral Rodas,Paul Andres & Molina,Isabel & Nguyen,Minh Cong, 2020. "Pull Your Small Area Estimates up by the Bootstraps," Policy Research Working Paper Series 9256, The World Bank.
    2. Kawakubo, Yuki & Kobayashi, Genya, 2023. "Small area estimation of general finite-population parameters based on grouped data," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).
    3. Chwila Adam & Żądło Tomasz, 2020. "On the choice of the number of Monte Carlo iterations and bootstrap replicates in Empirical Best Prediction," Statistics in Transition New Series, Statistics Poland, vol. 21(2), pages 35-60, June.
    4. Adam Chwila & Tomasz Żądło, 2020. "On the choice of the number of Monte Carlo iterations and bootstrap replicates in Empirical Best Prediction," Statistics in Transition New Series, Polish Statistical Association, vol. 21(2), pages 35-60, June.
    5. Isabel Molina & Paul Corral & Minh Nguyen, 2022. "Estimation of poverty and inequality in small areas: review and discussion," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(4), pages 1143-1166, December.
    6. Nora Würz & Timo Schmid & Nikos Tzavidis, 2022. "Estimating regional income indicators under transformations and access to limited population auxiliary information," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1679-1706, October.
    7. Isabel Molina, 2020. "Discussion of "Small area estimation: its evolution in five decades", by Malay Ghosh," Statistics in Transition New Series, Polish Statistical Association, vol. 21(4), pages 40-44, August.
    8. Paul Walter & Marcus Groß & Timo Schmid & Nikos Tzavidis, 2021. "Domain prediction with grouped income data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(4), pages 1501-1523, October.
    9. Agne Bikauskaite & Isabel Molina & Domingo Morales, 2022. "Multivariate mixture model for small area estimation of poverty indicators," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S2), pages 724-755, December.
    10. Molina Isabel, 2020. "Discussion of “Small area estimation: its evolution in five decades”, by Malay Ghosh," Statistics in Transition New Series, Statistics Poland, vol. 21(4), pages 40-44, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guadarrama, María & Molina, Isabel & Rao, J.N.K., 2016. "Small area estimation of general parameters under complex sampling designs," DES - Working Papers. Statistics and Econometrics. WS 22731, Universidad Carlos III de Madrid. Departamento de Estadística.
    2. Utz Pape & Luca Parisotto, 2019. "Estimating Poverty in a Fragile Context – The High Frequency Survey in South Sudan," HiCN Working Papers 305, Households in Conflict Network.
    3. Tomoki Fujii, 2013. "Geographic decomposition of inequality in health and wealth: evidence from Cambodia," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 11(3), pages 373-392, September.
    4. Channing Arndt & Azhar M. Hussain & Vincenzo Salvucci & Finn Tarp & Lars Peter Østerdal, 2016. "Poverty Mapping Based on First‐Order Dominance with an Example from Mozambique," Journal of International Development, John Wiley & Sons, Ltd., vol. 28(1), pages 3-21, January.
    5. Guadarrama Sanz, Maria & Rao, J. N. K., 2015. "A Comparison of Small Area Estimation Methods for Poverty Mapping," DES - Working Papers. Statistics and Econometrics. WS ws1505, Universidad Carlos III de Madrid. Departamento de Estadística.
    6. Cazzuffi, Chiara & Pereira-López, Mariana & Soloaga, Isidro, 2017. "Local poverty reduction in Chile and Mexico: The role of food manufacturing growth," Food Policy, Elsevier, vol. 68(C), pages 160-185.
    7. Walter, Paul & Groß, Markus & Schmid, Timo & Tzavidis, Nikos, 2017. "Estimation of linear and non-linear indicators using interval censored income data," Discussion Papers 2017/22, Free University Berlin, School of Business & Economics.
    8. Partha Lahiri & Jiraphan Suntornchost, 2020. "A general Bayesian approach to meet different inferential goals in poverty research for small areas," Statistics in Transition New Series, Polish Statistical Association, vol. 21(4), pages 237-253, August.
    9. Brocker, Johannes, 2005. "Necessary and unnecessary parameter restrictions for CDES demand systems," Conference papers 331358, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    10. Daniel Mont & Cuong Nguyen, 2018. "Spatial Variation in the Poverty Gap Between People With and Without Disabilities: Evidence from Vietnam," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 137(2), pages 745-763, June.
    11. Daniel, Mont & Nguyen, Cuong, 2013. "Spatial Variation in the Disability-Poverty Correlation: Evidence from Vietnam," MPRA Paper 48659, University Library of Munich, Germany.
    12. Christophe Muller & Sami Bibi, 2006. "Focused Targeting against Poverty Evidence from Tunisia," IDEP Working Papers 0602, Institut d'economie publique (IDEP), Marseille, France, revised Apr 2006.
    13. Nguyen Viet Cuong & Minh Thu Pham & Nguyet Pham Minh & Vu Thieu & Duong Toan, 2007. "Poverty Targeting and Impact of a Governmental Micro-credit Program in Vietnam," Working Papers PMMA 2007-29, PEP-PMMA.
    14. Rojas-Perilla, Natalia & Pannier, Sören & Schmid, Timo & Tzavidis, Nikos, 2017. "Data-driven transformations in small area estimation," Discussion Papers 2017/30, Free University Berlin, School of Business & Economics.
    15. Isabel Molina & Paul Corral & Minh Nguyen, 2022. "Estimation of poverty and inequality in small areas: review and discussion," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(4), pages 1143-1166, December.
    16. Healy, Andrew J. & Jitsuchon, Somchai, 2007. "Finding the poor in Thailand," Journal of Asian Economics, Elsevier, vol. 18(5), pages 739-759, October.
    17. Dang, Hai-Anh H & Dhongde, Shatakshee & Do, Minh N.N. & Nguyen, Cuong Viet & Pimhidzai, Obert, 2023. "Rapid Economic Growth but Rising Poverty Segregation: Will Vietnam Meet the SDGs for Equitable Development?," IZA Discussion Papers 15916, Institute of Labor Economics (IZA).
    18. Peter Lanjouw & Marleen Marra & Cuong Nguyen, 2017. "Vietnam’s Evolving Poverty Index Map: Patterns and Implications for Policy," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 133(1), pages 93-118, August.
    19. Nikos Tzavidis & Nicola Salvati & Monica Pratesi & Ray Chambers, 2008. "M-quantile models with application to poverty mapping," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 17(3), pages 393-411, July.
    20. Nguyen, Cuong & Tran Ngoc, Truong & Van der Weide, Roy, 2009. "Rural Poverty and Inequality Maps in Vietnam: Estimation using Vietnam Household Living Standard Survey 2006 and Rural Agriculture and Fishery Census 2006," MPRA Paper 36378, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:121:y:2018:i:c:p:20-40. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.