IDEAS home Printed from https://ideas.repec.org/p/cte/wsrepe/ws073408.html
   My bibliography  Save this paper

Bootstrap for estimating the mean squared error of the spatial EBLUP

Author

Listed:
  • Molina, Isabel
  • Salvati, Nicola
  • Pratesi, Monica

Abstract

This work assumes that the small area quantities of interest follow a Fay-Herriot model with spatially correlated random area effects. Under this model, parametric and nonparametric bootstrap procedures are proposed for estimating the mean squared error of the EBLUP (Empirical Best Linear Unbiased Predictor). A simulation study compares the bootstrap estimates with an asymptotic analytical approximation and studies the robustness to non-normality. Finally, two applications with real data are described.

Suggested Citation

  • Molina, Isabel & Salvati, Nicola & Pratesi, Monica, 2007. "Bootstrap for estimating the mean squared error of the spatial EBLUP," DES - Working Papers. Statistics and Econometrics. WS ws073408, Universidad Carlos III de Madrid. Departamento de Estadística.
  • Handle: RePEc:cte:wsrepe:ws073408
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/rest/api/core/bitstreams/d655c2a5-4b32-4cc0-8d08-36b6ad5f97d5/content
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gonzalez-Manteiga, W. & Lombardia, M.J. & Molina, I. & Morales, D. & Santamaria, L., 2007. "Estimation of the mean squared error of predictors of small area linear parameters under a logistic mixed model," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2720-2733, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. María Dolores Esteban & María José Lombardía & Esther López-Vizcaíno & Domingo Morales & Agustín Pérez, 2020. "Small area estimation of proportions under area-level compositional mixed models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(3), pages 793-818, September.
    2. Miguel Boubeta & María José Lombardía & Domingo Morales, 2016. "Empirical best prediction under area-level Poisson mixed models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(3), pages 548-569, September.
    3. Ralf Münnich & Jan Pablo Burgard & Siegfried Gabler & Matthias Ganninger & Jan-Philipp Kolb, 2016. "Small Area Estimation In The German Census 2011," Statistics in Transition New Series, Polish Statistical Association, vol. 17(1), pages 25-40, March.
    4. Tomasz Ża̧dło, 2015. "On longitudinal moving average model for prediction of subpopulation total," Statistical Papers, Springer, vol. 56(3), pages 749-771, August.
    5. M. D. Ugarte & A. F. Militino & T. Goicoa, 2008. "Adjusting economic estimates in business surveys," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(11), pages 1253-1265.
    6. Angelo Moretti, 2023. "Estimation of small area proportions under a bivariate logistic mixed model," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(4), pages 3663-3684, August.
    7. María Dolores Esteban & María José Lombardía & Esther López‐Vizcaíno & Domingo Morales & Agustín Pérez, 2022. "Empirical best prediction of small area bivariate parameters," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(4), pages 1699-1727, December.
    8. Boubeta, Miguel & Lombardía, María José & Morales, Domingo, 2017. "Poisson mixed models for studying the poverty in small areas," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 32-47.
    9. Tomáš Hobza & Domingo Morales & Laureano Santamaría, 2018. "Small area estimation of poverty proportions under unit-level temporal binomial-logit mixed models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 270-294, June.
    10. Chandra, Hukum & Salvati, Nicola & Chambers, Ray, 2018. "Small area estimation under a spatially non-linear model," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 19-38.
    11. Tomasz .Zk{a}d{l}o & Adam Chwila, 2024. "A step towards the integration of machine learning and small area estimation," Papers 2402.07521, arXiv.org.
    12. Rai Piyush Kant & Pareek Sarla & Joshi Hemlata, 2017. "Met and Unmet Need for Contraception: Small Area Estimation for Rajasthan State of India," Statistics in Transition New Series, Polish Statistical Association, vol. 18(2), pages 329-360, June.
    13. Burgard, Jan Pablo & Münnich, Ralf T., 2012. "Modelling over and undercounts for design-based Monte Carlo studies in small area estimation: An application to the German register-assisted census," Computational Statistics & Data Analysis, Elsevier, vol. 56(10), pages 2856-2863.
    14. Isabel Molina & Ewa Strzalkowska‐Kominiak, 2020. "Estimation of proportions in small areas: application to the labour force using the Swiss Census Structural Survey," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(1), pages 281-310, January.
    15. Isabel Molina & Ayoub Saei & M. José Lombardía, 2007. "Small area estimates of labour force participation under a multinomial logit mixed model," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(4), pages 975-1000, October.
    16. Joscha Krause & Jan Pablo Burgard & Domingo Morales, 2022. "$$\ell _2$$ ℓ 2 -penalized approximate likelihood inference in logit mixed models for regional prevalence estimation under covariate rank-deficiency," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(4), pages 459-489, May.
    17. G. Bertarelli & R. Chambers & N. Salvati, 2021. "Outlier robust small domain estimation via bias correction and robust bootstrapping," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 331-357, March.
    18. Piyush Kant Rai & Sarla Pareek & Hemlata Joshi, 2017. "Met And Unmet Need For Contraception: Small Area Estimation For Rajasthan State Of India," Statistics in Transition New Series, Polish Statistical Association, vol. 18(2), pages 329-360, June.
    19. Hukum Chandra, 2021. "District-Level Estimates of Poverty Incidence for the State of West Bengal in India: Application of Small Area Estimation Technique Combining NSSO Survey and Census Data," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(2), pages 375-391, June.
    20. Żądło Tomasz, 2017. "On Asymmetry of Prediction Errors in Small Area Estimation," Statistics in Transition New Series, Polish Statistical Association, vol. 18(3), pages 413-432, September.

    More about this item

    Keywords

    Spatial correlation;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws073408. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ana Poveda (email available below). General contact details of provider: http://portal.uc3m.es/portal/page/portal/dpto_estadistica .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.