IDEAS home Printed from https://ideas.repec.org/a/ces/ifosdt/v68y2015i22p26-28.html
   My bibliography  Save this article

Evaluation der ifo Konjunkturprognosen – ein Vergleich mit den Prognosen von Consensus Economics

Author

Listed:
  • Timo Wollmershäuser

Abstract

Ein Vergleich der seit 1991 erstellten Konjunkturprognosen des ifo Instituts mit den Prognosen von Consensus Economics im Hinblick auf ihre Treffgenauigkeit zeigt, dass die ifo-Prognosen für die Vorjahresveränderungsrate des realen Bruttoinlandsprodukts für das laufende und das kommende Jahr in Deutschland weitgehend eine – allerdings nur geringe – höhere Treffgenauigkeit aufweisen als die entsprechenden Durchschnittsprognosen von Consensus Economics. Dieses Ergebnis kann als Indiz für die Güte der vom ifo Institut verwendeten Prognosemethoden interpretiert werden.

Suggested Citation

  • Timo Wollmershäuser, 2015. "Evaluation der ifo Konjunkturprognosen – ein Vergleich mit den Prognosen von Consensus Economics," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 68(22), pages 26-28, November.
  • Handle: RePEc:ces:ifosdt:v:68:y:2015:i:22:p:26-28
    as

    Download full text from publisher

    File URL: https://www.ifo.de/DocDL/sd-2015-22-wollmershaeuser-evaluation-prognosen-2015-11-26.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Steffen Henzel & Sebastian Rast, 2013. "Prognoseeigenschaften von Indikatoren zur Vorhersage des Bruttoinlandsprodukts in Deutschland," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 66(17), pages 39-46, September.
    2. Kai Carstensen & Steffen Henzel & Johannes Mayr & Klaus Wohlrabe, 2009. "IFOCAST: Methoden der ifo-Kurzfristprognose," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 62(23), pages 15-28, December.
    3. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    4. Roy Batchelor, 2001. "How useful are the forecasts of intergovernmental agencies? The IMF and OECD versus the consensus," Applied Economics, Taylor & Francis Journals, vol. 33(2), pages 225-235.
    5. Steffen Henzel & Wolfgang Nierhaus & Timo Wollmershäuser, 2014. "Evaluation der ifo Konjunkturprognosen," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 67(17), pages 43-45, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Korbinian Breitrainer & Atanas Hristov, 2015. "Evaluation des Eurozone Economic Outlook," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 68(24), pages 67-73, December.
    2. Franziska Fobbe & Robert Lehmann, 2016. "Elektromotoren, Energieversorgung und Erziehung: Die Güte der entstehungsseitigen ifo-Kurzfristprognose," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 69(12), pages 58-63, June.
    3. Stefan Sauer & Klaus Wohlrabe, 2020. "ifo Handbuch der Konjunkturumfragen," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 88.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefan Sauer & Klaus Wohlrabe, 2020. "ifo Handbuch der Konjunkturumfragen," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 88.
    2. Wolfgang Nierhaus & Timo Wollmershäuser, 2016. "ifo Konjunkturumfragen und Konjunkturanalyse: Band II," ifo Forschungsberichte, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 72, September.
    3. Ashiya, Masahiro, 2007. "Forecast accuracy of the Japanese government: Its year-ahead GDP forecast is too optimistic," Japan and the World Economy, Elsevier, vol. 19(1), pages 68-85, January.
    4. Henzel Steffen R. & Lehmann Robert & Wohlrabe Klaus, 2015. "Nowcasting Regional GDP: The Case of the Free State of Saxony," Review of Economics, De Gruyter, vol. 66(1), pages 71-98, April.
    5. Filip Novotný & Marie Raková, 2011. "Assessment of Consensus Forecasts Accuracy: The Czech National Bank Perspective," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 61(4), pages 348-366, August.
    6. Reitz, Stefan & Ruelke, Jan & Stadtmann, Georg, 2009. "Are oil-price-forecasters finally right? -- Regressive expectations towards more fundamental values of the oil price," MPRA Paper 15607, University Library of Munich, Germany.
    7. Boussios, David & Skorbiansky, Sharon Raszap & MacLachlan, Matthew, 2021. "Evaluating U.S. Department of Agriculture’s Long-Term Forecasts for U.S. Harvested Area," Economic Research Report 327201, United States Department of Agriculture, Economic Research Service.
    8. Galimberti, Jaqueson K. & Moura, Marcelo L., 2013. "Taylor rules and exchange rate predictability in emerging economies," Journal of International Money and Finance, Elsevier, vol. 32(C), pages 1008-1031.
    9. Robert Lehmann, 2023. "The Forecasting Power of the ifo Business Survey," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 19(1), pages 43-94, March.
    10. Boussios, David & Skorbiansky, Sharon Raszap & Maclachlan, Matthew, 2021. "Evaluating U.S. Department of Agriculture’s Long-Term Forecasts for U.S. Harvested Area," USDA Miscellaneous 309616, United States Department of Agriculture.
    11. Boussios, David & Skoriansky, Sharon Raszap & MacLachlan, Matthew, 2021. "Evaluating U.S. Department of Agriculture’s Long-Term Forecasts for U.S. Harvested Area," USDA Miscellaneous 309619, United States Department of Agriculture.
    12. Haase, Felix & Neuenkirch, Matthias, 2023. "Predictability of bull and bear markets: A new look at forecasting stock market regimes (and returns) in the US," International Journal of Forecasting, Elsevier, vol. 39(2), pages 587-605.
    13. Steffen Henzel & Robert Lehmann & Klaus Wohlrabe, 2015. "Die Machbarkeit von Kurzfristprognosen für den Freistaat Sachsen," ifo Dresden berichtet, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 22(04), pages 21-25, August.
    14. Li, Ningzhong & Richardson, Scott & Tuna, İrem, 2014. "Macro to micro: Country exposures, firm fundamentals and stock returns," Journal of Accounting and Economics, Elsevier, vol. 58(1), pages 1-20.
    15. Steffen Henzel & Wolfgang Nierhaus & Tim Oliver Berg & Christian Breuer & Kai Carstensen & Christian Grimme & Oliver Hülsewig & Atanas Hristov & Nikolay Hristov & Michael Kleemann & Wolfgang Meister &, 2013. "ifo Konjunkturprognose 2013/2014: Deutsche Konjunkturlokomotive kommt unter Dampf," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 66(24), pages 20-67, December.
    16. Korbinian Breitrainer & Atanas Hristov, 2015. "Evaluation des Eurozone Economic Outlook," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 68(24), pages 67-73, December.
    17. Isiklar, Gultekin & Lahiri, Kajal, 2007. "How far ahead can we forecast? Evidence from cross-country surveys," International Journal of Forecasting, Elsevier, vol. 23(2), pages 167-187.
    18. Carabotta, Laura & Paluzie, Elisenda & Ramos, Raul, 2017. "Does fiscal responsibility matter? Evidence from public and private forecasters in Italy," International Journal of Forecasting, Elsevier, vol. 33(3), pages 694-706.
    19. Jansen, W. Jos & Jin, Xiaowen & de Winter, Jasper M., 2016. "Forecasting and nowcasting real GDP: Comparing statistical models and subjective forecasts," International Journal of Forecasting, Elsevier, vol. 32(2), pages 411-436.
    20. Jos Jansen & Jasper de Winter, 2016. "Improving model-based near-term GDP forecasts by subjective forecasts: A real-time exercise for the G7 countries," DNB Working Papers 507, Netherlands Central Bank, Research Department.

    More about this item

    Keywords

    Wirtschaftsprognose; Prognoseverfahren; Bewertung; Selbstevaluation; Vergleich;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ces:ifosdt:v:68:y:2015:i:22:p:26-28. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Klaus Wohlrabe (email available below). General contact details of provider: https://edirc.repec.org/data/ifooode.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.