IDEAS home Printed from https://ideas.repec.org/a/ces/ifodre/v11y2004i04p23-30.html
   My bibliography  Save this article

Prognose von Umsatz und Bruttowertschöpfung des verarbeitenden Gewerbes in Sachsen für das Jahr 2004 (Prognose der Bruttowertschöpfung des sächsischen verarbeitenden Gewerbes 2004)

Author

Listed:
  • Gerit Vogt

Abstract

Im letzten Jahr ist die sächsische Wirtschaft wieder spürbar gewachsen. Das reale Bruttoinlandsprodukt nahm im Vergleich zum Vorjahr um 1,2 % zu. Zeitgleich erhöhte sich die reale Bruttowertschöpfung des verarbeitenden Gewerbes um stattliche 7,0 %. Damit erwies sich das verarbeitende Gewerbe erneut als zentraler Träger der wirtschaftlichen Dynamik in Sachsen. Prognosen der zukünftigen Entwicklung dieses Wirtschaftsbereichs sind daher von besonderer Relevanz. In diesem Artikel wird ein ökonometrisches Prognosemodell für die Bruttowertschöpfung des verarbeitenden Gewerbes in Sachsen vorgestellt. Für das Jahr 2004 prognostiziert das Modell einen Anstieg der Bruttowertschöpfung von 6,2 %.

Suggested Citation

  • Gerit Vogt, 2004. "Prognose von Umsatz und Bruttowertschöpfung des verarbeitenden Gewerbes in Sachsen für das Jahr 2004 (Prognose der Bruttowertschöpfung des sächsischen verarbeitenden Gewerbes 2004)," ifo Dresden berichtet, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 11(04), pages 23-30, August.
  • Handle: RePEc:ces:ifodre:v:11:y:2004:i:04:p:23-30
    as

    Download full text from publisher

    File URL: https://www.ifo.de/DocDL/ifodb_2004_4_23-30.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Franck Sédillot & Nigel Pain, 2003. "Indicator Models of Real GDP Growth in Selected OECD Countries," OECD Economics Department Working Papers 364, OECD Publishing.
    2. Croushore, Dean & Stark, Tom, 2001. "A real-time data set for macroeconomists," Journal of Econometrics, Elsevier, vol. 105(1), pages 111-130, November.
    3. Moneta, Fabio, 2003. "Does the yield spread predict recessions in the euro area?," Working Paper Series 294, European Central Bank.
    4. Stark, Tom & Croushore, Dean, 2002. "Forecasting with a real-time data set for macroeconomists," Journal of Macroeconomics, Elsevier, vol. 24(4), pages 507-531, December.
    5. Reinhard Hild, 2004. "Produktion, Wertschöpfung und Beschäftigung im Verarbeitenden Gewerbe," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 57(07), pages 19-27, April.
    6. Brautzsch, Hans-Ulrich & Ludwig, Udo, 2002. "Vierteljährliche Entstehungsrechnung des Bruttoinlandsprodukts für Ostdeutschland: Sektorale Bruttowertschöpfung," IWH Discussion Papers 164/2002, Halle Institute for Economic Research (IWH).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gerit Vogt, 2009. "Konjunkturprognose in Deutschland. Ein Beitrag zur Prognose der gesamtwirtschaftlichen Entwicklung auf Bundes- und Länderebene," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 36.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gerit Vogt, 2009. "Konjunkturprognose in Deutschland. Ein Beitrag zur Prognose der gesamtwirtschaftlichen Entwicklung auf Bundes- und Länderebene," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 36.
    2. Giuseppe Parigi & Roberto Golinelli, 2007. "The use of monthly indicators to forecast quarterly GDP in the short run: an application to the G7 countries," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(2), pages 77-94.
    3. Golinelli, Roberto & Parigi, Giuseppe, 2008. "Real-time squared: A real-time data set for real-time GDP forecasting," International Journal of Forecasting, Elsevier, vol. 24(3), pages 368-385.
    4. Guido Bulligan & Roberto Golinelli & Giuseppe Parigi, 2010. "Forecasting monthly industrial production in real-time: from single equations to factor-based models," Empirical Economics, Springer, vol. 39(2), pages 303-336, October.
    5. Stan Hurn & Jing Tian & Lina Xu, 2021. "Assessing the Informational Content of Official Australian Bureau of Meteorology Forecasts of Wind Speed," The Economic Record, The Economic Society of Australia, vol. 97(319), pages 525-547, December.
    6. Orphanides, Athanasios & Williams, John C., 2008. "Learning, expectations formation, and the pitfalls of optimal control monetary policy," Journal of Monetary Economics, Elsevier, vol. 55(Supplemen), pages 80-96, October.
    7. Frederick H. Wallace & Gary L. Shelley & Luis F. Cabrera Castellanos, 2004. "Pruebas de la neutralidad monetaria a largo plazo: el caso de Nicaragua," Monetaria, CEMLA, vol. 0(4), pages 407-418, octubre-d.
    8. Brave, Scott A. & Gascon, Charles & Kluender, William & Walstrum, Thomas, 2021. "Predicting benchmarked US state employment data in real time," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1261-1275.
    9. Croushore, Dean & Evans, Charles L., 2006. "Data revisions and the identification of monetary policy shocks," Journal of Monetary Economics, Elsevier, vol. 53(6), pages 1135-1160, September.
    10. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Realtime nowcasting with a Bayesian mixed frequency model with stochastic volatility," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(4), pages 837-862, October.
    11. Harrison, Richard & Kapetanios, George & Yates, Tony, 2005. "Forecasting with measurement errors in dynamic models," International Journal of Forecasting, Elsevier, vol. 21(3), pages 595-607.
    12. Clements, Michael P. & Beatriz Galvao, Ana, 2010. "Real-time Forecasting of Inflation and Output Growth in the Presence of Data Revisions," Economic Research Papers 270771, University of Warwick - Department of Economics.
    13. Aastveit, Knut Are & Trovik, Tørres, 2014. "Estimating the output gap in real time: A factor model approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 54(2), pages 180-193.
    14. Michael P. Clements, 2014. "US Inflation Expectations and Heterogeneous Loss Functions, 1968–2010," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(1), pages 1-14, January.
    15. Pär Stockhammar & Pär Österholm, 2018. "Do inflation expectations granger cause inflation?," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 35(2), pages 403-431, August.
    16. Corradi, Valentina & Swanson, Norman R., 2004. "Some recent developments in predictive accuracy testing with nested models and (generic) nonlinear alternatives," International Journal of Forecasting, Elsevier, vol. 20(2), pages 185-199.
    17. David de Antonio Liedo, 2014. "Nowcasting Belgium," Working Paper Research 256, National Bank of Belgium.
    18. Athanasios Orphanides & John C. Williams, 2007. "Inflation targeting under imperfect knowledge," Economic Review, Federal Reserve Bank of San Francisco, pages 1-23.
    19. Anne Sofie Jore & James Mitchell & Shaun P. Vahey, 2010. "Combining forecast densities from VARs with uncertain instabilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 621-634.
    20. Bec, Frédérique & Kanda, Patrick, 2020. "Is inflation driven by survey-based, VAR-based or myopic expectations? An empirical assessment from US real-time data," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).

    More about this item

    Keywords

    Prognose; Umsatz; Verarbeitendes Gewerbe; Wertschöpfung; Sachsen;
    All these keywords.

    JEL classification:

    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
    • L60 - Industrial Organization - - Industry Studies: Manufacturing - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ces:ifodre:v:11:y:2004:i:04:p:23-30. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Klaus Wohlrabe (email available below). General contact details of provider: https://edirc.repec.org/data/ifooode.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.