IDEAS home Printed from https://ideas.repec.org/a/eco/journ2/2018-04-40.html
   My bibliography  Save this article

A New Energy Performance Indicator for Energy Management System of a Wheat Mill Plant

Author

Listed:
  • Julio R. G mez Sarduy

    (Center of Energy and Environmental Studies, Universidad de Cienfuegos, Cuba,)

  • Percy R. Viego Felipe

    (Center of Energy and Environmental Studies, Universidad de Cienfuegos, Cuba)

  • Yamile D az Torres

    (Center of Energy and Environmental Studies, Universidad de Cienfuegos, Cuba)

  • Mario A. lvarez-Guerra Plascencia

    (Center of Energy and Environmental Studies, Universidad de Cienfuegos, Cuba)

  • Vladimir Sousa Santos

    (Department of Energy, Universidad de la Costa (CUC), Barranquilla, Colombia)

  • Dries Haeseldonckx

    (KU Leuven, Faculty of Industrial Engineering, Campus Group T, Leuven, Belgium.)

Abstract

In this paper, a predictive tool for the energy consumption of wheat milling process using multiple linear regression and a new energy performance indicator (EnPI) is proposed. This EnPI does not only consider the production of flour but also the particle size of flour and added water for softening wheat. The results of the study, carried out in a wheat mill plant in Cuba, show a good coincidence between the predicted and real energy consumption for the developed model. It also demonstrates the effectiveness of EnPI proposed as a tool for management and energy savings in the company under study. Due to the complexity of the proposed model, for obtaining the baseline and estimating the energy saving potential, a probabilistic method was used. It was statistically demonstrated by the determination index (R2), that the new proposed model is superior to the conventional model of energy versus production

Suggested Citation

  • Julio R. G mez Sarduy & Percy R. Viego Felipe & Yamile D az Torres & Mario A. lvarez-Guerra Plascencia & Vladimir Sousa Santos & Dries Haeseldonckx, 2018. "A New Energy Performance Indicator for Energy Management System of a Wheat Mill Plant," International Journal of Energy Economics and Policy, Econjournals, vol. 8(4), pages 324-330.
  • Handle: RePEc:eco:journ2:2018-04-40
    as

    Download full text from publisher

    File URL: https://www.econjournals.com/index.php/ijeep/article/download/6753/3867
    Download Restriction: no

    File URL: https://www.econjournals.com/index.php/ijeep/article/view/6753/3867
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alexey Valentinovich Bogoviz & Svetlana Vladislavlevna Lobova & Yulia Vyacheslavovna Ragulina & Alexander Nikolaevich Alekseev, 2018. "A Critical Review of Russia s Energy Efficiency Policies in Agriculture," International Journal of Energy Economics and Policy, Econjournals, vol. 8(3), pages 67-75.
    2. Nabavi-Pelesaraei, Ashkan & Hosseinzadeh-Bandbafha, Homa & Qasemi-Kordkheili, Peyman & Kouchaki-Penchah, Hamed & Riahi-Dorcheh, Farshid, 2016. "Applying optimization techniques to improve of energy efficiency and GHG (greenhouse gas) emissions of wheat production," Energy, Elsevier, vol. 103(C), pages 672-678.
    3. Pusnik, Matevz & Al-Mansour, Fouad & Sucic, Boris & Gubina, A.F., 2016. "Gap analysis of industrial energy management systems in Slovenia," Energy, Elsevier, vol. 108(C), pages 41-49.
    4. Alexander N. Alekseev & Svetlana V. Lobova & Aleksei V. Bogoviz & Yulia V. Ragulina, 2019. "A Critical Review of Russia s Energy Efficiency Policies in the Construction and Housing Sector," International Journal of Energy Economics and Policy, Econjournals, vol. 9(4), pages 166-172.
    5. Georgi N. Todorov & Oleg M. Barbakov & Natalya I. Nikitina & Veronica Yu. Chernova, 2018. "Specifics in Modeling of Energy Efficient Production in Agribusiness," International Journal of Energy Economics and Policy, Econjournals, vol. 8(3), pages 51-57.
    6. Safa, M. & Samarasinghe, S., 2011. "Determination and modelling of energy consumption in wheat production using neural networks: “A case study in Canterbury province, New Zealand”," Energy, Elsevier, vol. 36(8), pages 5140-5147.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beisheim, Benedikt & Krämer, Stefan & Engell, Sebastian, 2020. "Hierarchical aggregation of energy performance indicators in continuous production processes," Applied Energy, Elsevier, vol. 264(C).
    2. Victor A. Alcal Abraham & Elkin D. Alem n Causil & Vladimir Sousa Santos & Eliana Noriega Angarita & Julio R. G mez Sarduy, 2021. "Identification of Savings Opportunities in a Steel Manufacturing Industry," International Journal of Energy Economics and Policy, Econjournals, vol. 11(4), pages 43-50.
    3. Hernan Hernandez-Herrera & Jorge I. Silva-Ortega & Vicente Leonel Mart nez Diaz & Zaid Garc a Sanchez & Gilberto Gonz lez Garc a & Sandra M. Escorcia & Habid E. Zarate, 2020. "Energy Savings Measures in Compressed Air Systems," International Journal of Energy Economics and Policy, Econjournals, vol. 10(3), pages 414-422.
    4. Adalberto Ospino Castro & Carlos Robles-Algar n & Rafael Pe a Gallardo, 2019. "Analysis of Energy Management and Financial Planning in the Implementation of PV Systems," International Journal of Energy Economics and Policy, Econjournals, vol. 9(4), pages 1-11.
    5. Techane Bosona, 2024. "Environmental Impact Assessment of Organic Wheat Cracker Value Chains with and without Nettle Powder as a Natural Additive: A Case of Sweden," Sustainability, MDPI, vol. 16(7), pages 1-12, April.
    6. John William Grimaldo Guerrero & Andr s David Rodr guez Toscano & Lucelys Vidal Pacheco & Jos Osorio Tovar, 2018. "Analysis of the Energetic and Productive Effects Derived by the Installation of a Conveyor Belt in the Metal-mechanic Industry," International Journal of Energy Economics and Policy, Econjournals, vol. 8(6), pages 196-201.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hamed Rafiee & Milad Aminizadeh & Elham Mehrparvar Hosseini & Hanane Aghasafari & Ali Mohammadi, 2022. "A Cluster Analysis on the Energy Use Indicators and Carbon Footprint of Irrigated Wheat Cropping Systems," Sustainability, MDPI, vol. 14(7), pages 1-19, March.
    2. Svetlana Vladislavlevna Lobova & Aleksei Valentinovich Bogoviz & Yulia Vyacheslavovna Ragulina & Alexander Nikolaevich Alekseev, 2019. "The Fuel and Energy Complex of Russia: Analyzing Energy Efficiency Policies at the Federal Level," International Journal of Energy Economics and Policy, Econjournals, vol. 9(1), pages 205-211.
    3. Amine Lahiani & Sinha Avik & Muhammad Shahbaz, 2018. "Renewable energy consumption, income, CO2 emissions and oil prices in G7 countries: The importance of asymmetries," Post-Print hal-03677233, HAL.
    4. Golpîra, Hêriş, 2020. "Smart Energy-Aware Manufacturing Plant Scheduling under Uncertainty: A Risk-Based Multi-Objective Robust Optimization Approach," Energy, Elsevier, vol. 209(C).
    5. Buratti, C. & Barbanera, M. & Palladino, D., 2014. "An original tool for checking energy performance and certification of buildings by means of Artificial Neural Networks," Applied Energy, Elsevier, vol. 120(C), pages 125-132.
    6. Van linden, Veerle & Herman, Lieve, 2014. "A fuel consumption model for off-road use of mobile machinery in agriculture," Energy, Elsevier, vol. 77(C), pages 880-889.
    7. Sara Ilahi & Yongchang Wu & Muhammad Ahsan Ali Raza & Wenshan Wei & Muhammad Imran & Lyankhua Bayasgalankhuu, 2019. "Optimization Approach for Improving Energy Efficiency and Evaluation of Greenhouse Gas Emission of Wheat Crop using Data Envelopment Analysis," Sustainability, MDPI, vol. 11(12), pages 1-16, June.
    8. Pritpal Singh & Gurdeep Singh & G. P. S. Sodhi, 2022. "Data envelopment analysis based optimization for improving net ecosystem carbon and energy budget in cotton (Gossypium hirsutum L.) cultivation: methods and a case study of north-western India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 2079-2119, February.
    9. Chen, Weidong & Geng, Wenxin, 2017. "Fossil energy saving and CO2 emissions reduction performance, and dynamic change in performance considering renewable energy input," Energy, Elsevier, vol. 120(C), pages 283-292.
    10. Khoshnevisan, Benyamin & Rafiee, Shahin & Omid, Mahmoud & Yousefi, Marziye & Movahedi, Mehran, 2013. "Modeling of energy consumption and GHG (greenhouse gas) emissions in wheat production in Esfahan province of Iran using artificial neural networks," Energy, Elsevier, vol. 52(C), pages 333-338.
    11. Sergey S. Neustroev & Anna A. Arinushkina, 2019. "Energy Efficiency and Energy Saving in Public Schools: Federal Policy and Regional Perspectives from Russia," International Journal of Energy Economics and Policy, Econjournals, vol. 9(6), pages 535-541.
    12. Uzlu, Ergun & Akpınar, Adem & Özturk, Hasan Tahsin & Nacar, Sinan & Kankal, Murat, 2014. "Estimates of hydroelectric generation using neural networks with the artificial bee colony algorithm for Turkey," Energy, Elsevier, vol. 69(C), pages 638-647.
    13. Souhankar, Amirhossein & Mortezaee, Ahmad & Hafezi, Reza, 2023. "Potentials for energy-saving and efficiency capacities in Iran: An interpretive structural model to prioritize future national policies," Energy, Elsevier, vol. 262(PB).
    14. Marius Kazlauskas & Indrė Bručienė & Dainius Savickas & Vilma Naujokienė & Sidona Buragienė & Dainius Steponavičius & Kęstutis Romaneckas & Egidijus Šarauskis, 2023. "Life Cycle Assessment of Winter Wheat Production Using Precision and Conventional Seeding Technologies," Sustainability, MDPI, vol. 15(19), pages 1-13, September.
    15. Singh, Pritpal & Singh, Gurdeep & Sodhi, G.P.S., 2019. "Energy auditing and optimization approach for improving energy efficiency of rice cultivation in south-western Punjab, India," Energy, Elsevier, vol. 174(C), pages 269-279.
    16. Kazemi, Hossein & Kamkar, Behnam & Lakzaei, Somayeh & Badsar, Meysam & Shahbyki, Malihe, 2015. "Energy flow analysis for rice production in different geographical regions of Iran," Energy, Elsevier, vol. 84(C), pages 390-396.
    17. Nisar, Shahida & Benbi, Dinesh Kumar & Toor, Amardeep Singh, 2021. "Energy budgeting and carbon footprints of three tillage systems in maize-wheat sequence of north-western Indo-Gangetic Plains," Energy, Elsevier, vol. 229(C).
    18. Liu, Yigang & Li, Guoxuan & Chen, Zhengrun & Shen, Yuanyuan & Zhang, Hongru & Wang, Shuai & Qi, Jianguang & Zhu, Zhaoyou & Wang, Yinglong & Gao, Jun, 2020. "Comprehensive analysis of environmental impacts and energy consumption of biomass-to-methanol and coal-to-methanol via life cycle assessment," Energy, Elsevier, vol. 204(C).
    19. Elsoragaby, Suha & Yahya, Azmi & Mahadi, Muhammad Razif & Nawi, Nazmi Mat & Mairghany, Modather, 2019. "Energy utilization in major crop cultivation," Energy, Elsevier, vol. 173(C), pages 1285-1303.
    20. Yeo, In-Ae & Yee, Jurng-Jae, 2014. "A proposal for a site location planning model of environmentally friendly urban energy supply plants using an environment and energy geographical information system (E-GIS) database (DB) and an artifi," Applied Energy, Elsevier, vol. 119(C), pages 99-117.

    More about this item

    Keywords

    energy performance indicators; energy efficiency; wheat milling;
    All these keywords.

    JEL classification:

    • K32 - Law and Economics - - Other Substantive Areas of Law - - - Energy, Environmental, Health, and Safety Law
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eco:journ2:2018-04-40. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ilhan Ozturk (email available below). General contact details of provider: http://www.econjournals.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.