IDEAS home Printed from https://ideas.repec.org/a/caa/jnlrae/v66y2020i4id41-2020-rae.html
   My bibliography  Save this article

Analysis of the physical-mechanical properties of a pelleted chicken litter organic fertiliser

Author

Listed:
  • Anna Brunerová

    (Department of Material and Manufacturing Technology, Faculty of Engineering, Czech University of Life Sciences Prague, Prague, Czech Republic)

  • Miroslav Müller

    (Department of Material and Manufacturing Technology, Faculty of Engineering, Czech University of Life Sciences Prague, Prague, Czech Republic)

  • Gürkan Alp Kağan Gürdil

    (Department of Agricultural Machines and Technologies Engineering Faculty of Agriculture, Ondokuz Mayis University, Samsun, Turkey)

  • Vladimír Šleger

    (Department of Mechanical Engineering, Faculty of Engineering, Czech University of Life Sciences Prague, Prague, Czech Republic)

  • Milan Brožek

    (Department of Material and Manufacturing Technology, Faculty of Engineering, Czech University of Life Sciences Prague, Prague, Czech Republic)

Abstract

Pelleted fertiliser production represents improvements in fertiliser management and ensures several benefits, such as a more accurate dosing (less applications), the slow-release of long-lasting nutrients, the possible application during the whole year, easier storage and transportation and better separation of fertilisers and pesticides. The present research investigated the physical-mechanical properties of a pelleted chicken litter organic fertiliser. The pellet samples' particle density ρ (kg.m-3), mechanical durability DU (%), compressive strengths in the cleft σc (N.mm-1) and in simple pressure σp (MPa) were investigated. The last two indicators, σc and σp, demonstrated the pellets' resistance to the compressive stress. The resulting values proved ρ = 1 289.73 kg.m-3, DU = 95.5%, σc = 58.61 N.mm-1 and σp = 20.02 MPa, while all the results were evaluated positively. The observed level of the DU (%) did not achieve the mandatory level for the commercial production of pellets (DU = 97.5%), however, such a level is stated for a pellet solid biofuel intended for energy production. Therefore, the achieved level of the DU (%) represents a satisfactory result within the investigated pellet samples' mechanical quality. In general, the viability and practicability of chicken litter pellet production was proven, as well as, the suitability of such a feedstock for pellet production. Moreover, the observed results proved a high level of the investigated pellet samples' mechanical quality.

Suggested Citation

  • Anna Brunerová & Miroslav Müller & Gürkan Alp Kağan Gürdil & Vladimír Šleger & Milan Brožek, 2020. "Analysis of the physical-mechanical properties of a pelleted chicken litter organic fertiliser," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 66(4), pages 131-139.
  • Handle: RePEc:caa:jnlrae:v:66:y:2020:i:4:id:41-2020-rae
    DOI: 10.17221/41/2020-RAE
    as

    Download full text from publisher

    File URL: http://rae.agriculturejournals.cz/doi/10.17221/41/2020-RAE.html
    Download Restriction: free of charge

    File URL: http://rae.agriculturejournals.cz/doi/10.17221/41/2020-RAE.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/41/2020-RAE?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arkadiusz Dyjakon & Tomasz Noszczyk, 2019. "The Influence of Freezing Temperature Storage on the Mechanical Durability of Commercial Pellets from Biomass," Energies, MDPI, vol. 12(13), pages 1-13, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hamid Gilvari & Wiebren De Jong & Dingena L. Schott, 2020. "The Effect of Biomass Pellet Length, Test Conditions and Torrefaction on Mechanical Durability Characteristics According to ISO Standard 17831-1," Energies, MDPI, vol. 13(11), pages 1-16, June.
    2. Sergio Jaimes Rueda & Bruna Rego de Vasconcelos & Xavier Duret & Jean-Michel Lavoie, 2022. "Lignin Pellets for Advanced Thermochemical Process—From a Single Pellet System to a Laboratory-Scale Pellet Mill," Energies, MDPI, vol. 15(9), pages 1-20, April.
    3. Paweł Stępień & Kacper Świechowski & Martyna Hnat & Szymon Kugler & Sylwia Stegenta-Dąbrowska & Jacek A. Koziel & Piotr Manczarski & Andrzej Białowiec, 2019. "Waste to Carbon: Biocoal from Elephant Dung as New Cooking Fuel," Energies, MDPI, vol. 12(22), pages 1-32, November.
    4. Stolarski, Mariusz J. & Stachowicz, Paweł & Dudziec, Paweł, 2022. "Wood pellet quality depending on dendromass species," Renewable Energy, Elsevier, vol. 199(C), pages 498-508.
    5. Sergio Paniagua & Alba Prado-Guerra & Ana Isabel Neto & Teresa Nunes & Luís Tarelho & Célia Alves & Luis Fernando Calvo, 2020. "Influence of Varieties and Organic Fertilizer in the Elaboration of a New Poplar-Straw Pellet and Its Emissions in a Domestic Boiler," Energies, MDPI, vol. 13(23), pages 1-17, November.
    6. Marcin Jewiarz & Krzysztof Mudryk & Marek Wróbel & Jarosław Frączek & Krzysztof Dziedzic, 2020. "Parameters Affecting RDF-Based Pellet Quality," Energies, MDPI, vol. 13(4), pages 1-17, February.
    7. Marcin Jewiarz & Marek Wróbel & Krzysztof Mudryk & Szymon Szufa, 2020. "Impact of the Drying Temperature and Grinding Technique on Biomass Grindability," Energies, MDPI, vol. 13(13), pages 1-22, July.
    8. Arkadiusz Dyjakon & Tomasz Noszczyk & Agata Mostek, 2021. "Mechanical Durability and Grindability of Pellets after Torrefaction Process," Energies, MDPI, vol. 14(20), pages 1-16, October.
    9. Lyes Bennamoun & Merlin Simo-Tagne & Macmanus Chinenye Ndukwu, 2020. "Simulation of Storage Conditions of Mixed Biomass Pellets for Bioenergy Generation: Study of the Thermodynamic Properties," Energies, MDPI, vol. 13(10), pages 1-14, May.
    10. Magdalena Kachel & Artur Kraszkiewicz & Alaa Subr & Stanisław Parafiniuk & Artur Przywara & Milan Koszel & Grzegorz Zając, 2020. "Impact of the Type of Fertilization and the Addition of Glycerol on the Quality of Spring Rape Straw Pellets," Energies, MDPI, vol. 13(4), pages 1-11, February.
    11. Jerzy Chojnacki & Agnieszka Zdanowicz & Juraj Ondruška & Ľubomír Šooš & Małgorzata Smuga-Kogut, 2021. "The Influence of Apple, Carrot and Red Beet Pomace Content on the Properties of Pellet from Barley Straw," Energies, MDPI, vol. 14(2), pages 1-13, January.
    12. Bruno Rafael de Almeida Moreira & Ronaldo da Silva Viana & Victor Hugo Cruz & Paulo Renato Matos Lopes & Celso Tadao Miasaki & Anderson Chagas Magalhães & Paulo Alexandre Monteiro de Figueiredo & Luca, 2020. "Anti-Thermal Shock Binding of Liquid-State Food Waste to Non-Wood Pellets," Energies, MDPI, vol. 13(12), pages 1-26, June.
    13. Rajitha Lakshan Rupasinghe & Priyan Perera & Rangika Bandara & Hiran Amarasekera & Richard Vlosky, 2023. "Insights into Properties of Biomass Energy Pellets Made from Mixtures of Woody and Non-Woody Biomass: A Meta-Analysis," Energies, MDPI, vol. 17(1), pages 1-38, December.
    14. Arkadiusz Dyjakon & Łukasz Sobol & Mateusz Krotowski & Krzysztof Mudryk & Krzysztof Kawa, 2020. "The Impact of Particles Comminution on Mechanical Durability of Wheat Straw Briquettes," Energies, MDPI, vol. 13(23), pages 1-14, November.
    15. Arkadiusz Dyjakon & Tomasz Noszczyk, 2020. "Alternative Fuels from Forestry Biomass Residue: Torrefaction Process of Horse Chestnuts, Oak Acorns, and Spruce Cones," Energies, MDPI, vol. 13(10), pages 1-19, May.
    16. Marek Wróbel & Marcin Jewiarz & Krzysztof Mudryk & Adrian Knapczyk, 2020. "Influence of Raw Material Drying Temperature on the Scots Pine ( Pinus sylvestris L.) Biomass Agglomeration Process—A Preliminary Study," Energies, MDPI, vol. 13(7), pages 1-17, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlrae:v:66:y:2020:i:4:id:41-2020-rae. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.