Hydrothermal carbonization of stabilized sludge and meat and bone meal
Author
Abstract
Suggested Citation
DOI: 10.17221/59/2013-RAE
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- J. Malaťák & L. Passian, 2011. "Heat-emission analysis of small combustion equipments for biomass," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 57(2), pages 37-50.
- He, Chao & Giannis, Apostolos & Wang, Jing-Yuan, 2013. "Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: Hydrochar fuel characteristics and combustion behavior," Applied Energy, Elsevier, vol. 111(C), pages 257-266.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- J. Velebil & J. Malaťák & J. Bradna, 2016. "Mass yield of biochar from hydrothermal carbonization of sucrose," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 62(4), pages 179-184.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xiao, Zhihua & Yuan, Xingzhong & Jiang, Longbo & Chen, Xiaohong & Li, Hui & Zeng, Guangming & Leng, Lijian & Wang, Hou & Huang, Huajun, 2015. "Energy recovery and secondary pollutant emission from the combustion of co-pelletized fuel from municipal sewage sludge and wood sawdust," Energy, Elsevier, vol. 91(C), pages 441-450.
- Dilvin Cebi & Melih Soner Celiktas & Hasan Sarptas, 2022. "A Review on Sewage Sludge Valorization via Hydrothermal Carbonization and Applications for Circular Economy," Circular Economy and Sustainability, Springer, vol. 2(4), pages 1345-1367, December.
- Ma, Jiao & Feng, Shuo & Zhang, Zhikun & Wang, Zhuozhi & Kong, Wenwen & Yuan, Peng & Shen, Boxiong & Mu, Lan, 2022. "Effect of torrefaction pretreatment on the combustion characteristics of the biodried products derived from municipal organic wastes," Energy, Elsevier, vol. 239(PD).
- Wilk, Małgorzata & Magdziarz, Aneta & Kalemba-Rec, Izabela & Szymańska-Chargot, Monika, 2020. "Upgrading of green waste into carbon-rich solid biofuel by hydrothermal carbonization: The effect of process parameters on hydrochar derived from acacia," Energy, Elsevier, vol. 202(C).
- Czerwińska, Klaudia & Śliz, Maciej & Wilk, Małgorzata, 2022. "Hydrothermal carbonization process: Fundamentals, main parameter characteristics and possible applications including an effective method of SARS-CoV-2 mitigation in sewage sludge. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
- Tiago Teribele & Maria Elizabeth Gemaque Costa & Conceição de Maria Sales da Silva & Lia Martins Pereira & Lucas Pinto Bernar & Douglas Alberto Rocha de Castro & Fernanda Paula da Costa Assunção & Mar, 2023. "Hydrothermal Carbonization of Corn Stover: Structural Evolution of Hydro-Char and Degradation Kinetics," Energies, MDPI, vol. 16(7), pages 1-22, April.
- Gao, Pin & Zhou, Yiyuan & Meng, Fang & Zhang, Yihui & Liu, Zhenhong & Zhang, Wenqi & Xue, Gang, 2016. "Preparation and characterization of hydrochar from waste eucalyptus bark by hydrothermal carbonization," Energy, Elsevier, vol. 97(C), pages 238-245.
- Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
- Okey Francis Obi & Temitope Olumide Olugbade & Joseph Ifeolu Orisaleye & Ralf Pecenka, 2023. "Solid Biofuel Production from Biomass: Technologies, Challenges, and Opportunities for Its Commercial Production in Nigeria," Energies, MDPI, vol. 16(24), pages 1-22, December.
- Zhang, Xianwen & Deng, Hongkun & Yang, Jing & Yu, Zhenhua & Xing, Xianjun & Ma, Peiyong, 2020. "Isoconversional kinetics of pyrolysis of vaporthermally carbonized bamboo," Renewable Energy, Elsevier, vol. 149(C), pages 701-707.
- Pablo J. Arauzo & María Atienza-Martínez & Javier Ábrego & Maciej P. Olszewski & Zebin Cao & Andrea Kruse, 2020. "Combustion Characteristics of Hydrochar and Pyrochar Derived from Digested Sewage Sludge," Energies, MDPI, vol. 13(16), pages 1-15, August.
- Doyoon Ryu & Jongkeun Lee & Doyong Kim & Kyehwan Jang & Jongwook Lee & Daegi Kim, 2022. "Enhancement of the Biofuel Characteristics of Empty Fruit Bunches through Hydrothermal Carbonization by Decreasing the Inorganic Matters," Energies, MDPI, vol. 15(21), pages 1-10, November.
- Lu, Xiaoluan & Ma, Xiaoqian & Chen, Xinfei, 2021. "Co-hydrothermal carbonization of sewage sludge and lignocellulosic biomass: Fuel properties and heavy metal transformation behaviour of hydrochars," Energy, Elsevier, vol. 221(C).
- Md Tahmid Islam & Al Ibtida Sultana & Cadianne Chambers & Swarna Saha & Nepu Saha & Kawnish Kirtania & M. Toufiq Reza, 2022. "Recent Progress on Emerging Applications of Hydrochar," Energies, MDPI, vol. 15(24), pages 1-45, December.
- Chen, Lichun & Wen, Chang & Wang, Wenyu & Liu, Tianyu & Liu, Enze & Liu, Haowen & Li, Zexin, 2020. "Combustion behaviour of biochars thermally pretreated via torrefaction, slow pyrolysis, or hydrothermal carbonisation and co-fired with pulverised coal," Renewable Energy, Elsevier, vol. 161(C), pages 867-877.
- Ibrahim Shaba Mohammed & Risu Na & Keisuke Kushima & Naoto Shimizu, 2020. "Investigating the Effect of Processing Parameters on the Products of Hydrothermal Carbonization of Corn Stover," Sustainability, MDPI, vol. 12(12), pages 1-21, June.
- Wilhelm Jan Tic & Joanna Guziałowska-Tic & Halina Pawlak-Kruczek & Eugeniusz Woźnikowski & Adam Zadorożny & Łukasz Niedźwiecki & Mateusz Wnukowski & Krystian Krochmalny & Michał Czerep & Michał Ostryc, 2018. "Novel Concept of an Installation for Sustainable Thermal Utilization of Sewage Sludge," Energies, MDPI, vol. 11(4), pages 1-17, March.
- Azzaz, Ahmed Amine & Khiari, Besma & Jellali, Salah & Ghimbeu, Camélia Matei & Jeguirim, Mejdi, 2020. "Hydrochars production, characterization and application for wastewater treatment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
- Yu, Yang & Lei, Zhongfang & Yang, Xi & Yang, Xiaojing & Huang, Weiwei & Shimizu, Kazuya & Zhang, Zhenya, 2018. "Hydrothermal carbonization of anaerobic granular sludge: Effect of process temperature on nutrients availability and energy gain from produced hydrochar," Applied Energy, Elsevier, vol. 229(C), pages 88-95.
- Pablo J. Arauzo & Maciej P. Olszewski & Andrea Kruse, 2018. "Hydrothermal Carbonization Brewer’s Spent Grains with the Focus on Improving the Degradation of the Feedstock," Energies, MDPI, vol. 11(11), pages 1-15, November.
More about this item
Keywords
biochar; hydrochar; wet pyrolysis; biomass; heating value; stoichiometry;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlrae:v:61:y:2015:i:1:id:59-2013-rae. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.