IDEAS home Printed from https://ideas.repec.org/a/caa/jnlpse/v69y2023i10id254-2023-pse.html
   My bibliography  Save this article

Legume crops use a phosphorus-mobilising strategy to adapt to low plant-available phosphorus in acidic soil in southwest China

Author

Listed:
  • Mei Chen

    (College of Life Sciences, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guizhou Province, Guiyang, P.R. China
    College of Agriculture, Guizhou University, Guizhou Province, Guiyang, P.R. China)

  • Xin Luo

    (College of Agriculture, Guizhou University, Guizhou Province, Guiyang, P.R. China)

  • Long Jiang

    (College of Life Sciences, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guizhou Province, Guiyang, P.R. China)

  • Rui Dong

    (College of Zoology, Guizhou University, Guizhou Province, Guiyang, P.R. China)

  • K.H.M. Siddique

    (The UWA Institute of Agriculture, The University of Western Australia, Perth, Australia)

  • Jin He

    (College of Life Sciences, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guizhou Province, Guiyang, P.R. China
    College of Agriculture, Guizhou University, Guizhou Province, Guiyang, P.R. China)

Abstract

Phosphorus (P) deficiency significantly affects crop productivity, especially legume crops. Therefore, it is important to understand the P-acquisition strategies of different leguminous crops. In this study, we undertook a pot experiment with 11 legume crops (soybean, faba bean, pea, cowpea, common bean, lentil, adzuki bean, chickpea, grass pea, red kidney bean and common vetch) to investigate P-acquisition strategies related to root morphology, organic acid and acid phosphatase exudations, and arbuscular mycorrhizal fungi (AMF) colonisation under low (4.4 mg/kg) and optimal (40 mg/kg) P conditions. The results revealed that P deficiency significantly decreased biomass and P accumulation, root length (10.5%), and root surface area (7.9%), increased organic acid exudation (80.2%) and acid phosphatase activity (16.8%), and did not affect root diameter or root AMF colonisation rate. Principal component analysis revealed a positive correlation between organic acid exudation and acid phosphatase activity, while root length and root surface area negatively correlated with organic acid exudation, acid phosphatase activity and root AMF colonisation rate. P accumulation positively correlated with root length, surface area, and diameter but negatively correlated with organic acid exudation, acid phosphatase activity, and AMF colonisation rate. These findings confirmed the following: (1) legume crops use a P-mobilisation strategy related to organic acid exudation and acid phosphatase activity to acquire P under low soil P conditions; (2) organic acid exudation coincided with acid phosphatase activity to mobilise soil inorganic and organic P, improving P accumulation; (3) a trade-off exists between the P-scavenging strategy related to root morphology traits and mobilisation strategy.

Suggested Citation

  • Mei Chen & Xin Luo & Long Jiang & Rui Dong & K.H.M. Siddique & Jin He, 2023. "Legume crops use a phosphorus-mobilising strategy to adapt to low plant-available phosphorus in acidic soil in southwest China," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 69(10), pages 471-479.
  • Handle: RePEc:caa:jnlpse:v:69:y:2023:i:10:id:254-2023-pse
    DOI: 10.17221/254/2023-PSE
    as

    Download full text from publisher

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/254/2023-PSE.html
    Download Restriction: free of charge

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/254/2023-PSE.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/254/2023-PSE?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jin He & Yi Jin & Kadambot H. M. Siddique & Feng-Min Li, 2021. "Trade-Off between Root Efficiency and Root Size Is Associated with Yield Performance of Soybean under Different Water and Phosphorus Levels," Agriculture, MDPI, vol. 11(6), pages 1-11, May.
    2. Rico Gamuyao & Joong Hyoun Chin & Juan Pariasca-Tanaka & Paolo Pesaresi & Sheryl Catausan & Cheryl Dalid & Inez Slamet-Loedin & Evelyn Mae Tecson-Mendoza & Matthias Wissuwa & Sigrid Heuer, 2012. "The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency," Nature, Nature, vol. 488(7412), pages 535-539, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdul Rehman & Luan Jingdong & Abbas Ali Chandio & Muhammad Shabbir & Imran Hussain, 2017. "Economic outlook of rice crops in Pakistan: a time series analysis (1970–2015)," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 3(1), pages 1-9, December.
    2. Ian Paul Navea & Jae-Hyuk Han & Na-Hyun Shin & O New Lee & Soon-Wook Kwon & Il-Ryong Choi & Joong Hyoun Chin, 2022. "Assessing the Effect of a Major Quantitative Locus for Phosphorus Uptake ( Pup1 ) in Rice ( O. sativa L.) Grown under a Temperate Region," Agriculture, MDPI, vol. 12(12), pages 1-16, November.
    3. Hongbo Li & Shenhao Wang & Sen Chai & Zhiquan Yang & Qiqi Zhang & Hongjia Xin & Yuanchao Xu & Shengnan Lin & Xinxiu Chen & Zhiwang Yao & Qingyong Yang & Zhangjun Fei & Sanwen Huang & Zhonghua Zhang, 2022. "Graph-based pan-genome reveals structural and sequence variations related to agronomic traits and domestication in cucumber," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Yi Jin & Jin He & Yonghe Zhu & Kadambot H. M. Siddique, 2022. "Nodule Formation and Nitrogen Use Efficiency Are Important for Soybean to Adapt to Water and P Deficit Conditions," Agriculture, MDPI, vol. 12(9), pages 1-11, August.
    5. Gyoungju Nah & Ji-Hoon Im & Jin-Won Kim & Hae-Rim Park & Min-Jung Yook & Tae-Jin Yang & Albert J Fischer & Do-Soon Kim, 2015. "Uncovering the Differential Molecular Basis of Adaptive Diversity in Three Echinochloa Leaf Transcriptomes," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-20, August.
    6. Daiqi Wang & Hongru Wang & Xiaomei Xu & Man Wang & Yahuan Wang & Hong Chen & Fei Ping & Huanhuan Zhong & Zhengkun Mu & Wantong Xie & Xiangyu Li & Jingbin Feng & Milan Zhang & Zhilan Fan & Tifeng Yang , 2023. "Two complementary genes in a presence-absence variation contribute to indica-japonica reproductive isolation in rice," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Laxmi Prasad Pant, 2019. "Responsible innovation through conscious contestation at the interface of agricultural science, policy, and civil society," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 36(2), pages 183-197, June.
    8. Zilong Guo & Hongrui Cao & Jing Zhao & Shuang Bai & Wenting Peng & Jian Li & Lili Sun & Liyu Chen & Zhihao Lin & Chen Shi & Qing Yang & Yongqing Yang & Xiurong Wang & Jiang Tian & Zhichang Chen & Hong, 2022. "A natural uORF variant confers phosphorus acquisition diversity in soybean," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    9. Ciro Antonio Rosolem & Thiago Barbosa Batista & Patrícia Pereira Dias & Laudelino Vieira da Motta Neto & Juliano Carlos Calonego, 2022. "The Joint Application of Phosphorus and Ammonium Enhances Soybean Root Growth and P Uptake," Agriculture, MDPI, vol. 12(6), pages 1-9, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlpse:v:69:y:2023:i:10:id:254-2023-pse. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.