IDEAS home Printed from https://ideas.repec.org/a/caa/jnlpse/v64y2018i9id372-2018-pse.html
   My bibliography  Save this article

Potential of Mehlich 3 method for extracting plant available sulfur in the Czech agricultural soils

Author

Listed:
  • Martin KULHÁNEK
  • Jindřich ČERNÝ

    (Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic)

  • Jiří BALÍK

    (Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic)

  • Ondřej SEDLÁŘ

    (Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic)

  • Pavel SURAN

    (Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic)

Abstract

Mehlich 3 is an extractant used worldwide for extracting bioavailable nutrients in soils; however, its extraction abilities for sulfur (S) are still not well described. The aim of this preliminary study was to compare the results of Mehlich 3 determined soil S fraction (SM3) with the results of sulfur fractionation, mainly focusing on bioavailable S (Sav - sum of water-extractable (Sw) and adsorbed (Sads) sulfur). Air dried soil samples from commonly used agricultural soils were chosen for the analyses. The following S fractions were determined: (i) Sw; (ii) Sads; (iii) Sav; (iv) 1 mol/L HCl extractable (SHCl); (v) estersulfate (Ses); (vi) organic (Sorg) and (vii) total (Stot). The median value of SM3 (18.3 mg/kg) was similar to Sav (17.9 mg/kg). From the correlation and regression analysis it is clear that SM3 results are in close relationship with Sav form. On the other hand, the relationships between SM3 and organic S (including SHCl) were very weak. Based on the obtained results it can be concluded that Mehlich 3 method has a good potential to determine bioavailable sulfur in commonly used agricultural soils. However, especially the plant response should be further studied to confirm this theory.

Suggested Citation

  • Martin KULHÁNEK & Jindřich ČERNÝ & Jiří BALÍK & Ondřej SEDLÁŘ & Pavel SURAN, 2018. "Potential of Mehlich 3 method for extracting plant available sulfur in the Czech agricultural soils," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 64(9), pages 455-462.
  • Handle: RePEc:caa:jnlpse:v:64:y:2018:i:9:id:372-2018-pse
    DOI: 10.17221/372/2018-PSE
    as

    Download full text from publisher

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/372/2018-PSE.html
    Download Restriction: free of charge

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/372/2018-PSE.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/372/2018-PSE?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Kulhánek & J. Balík & J. Černý & O. Sedlář & F. Vašák, 2016. "Evaluating of soil sulfur forms changes under different fertilizing systems during long-term field experiments," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 62(9), pages 408-415.
    2. S. Förster & G. Welp & H.W. Scherer, 2012. "Sulfur specification in bulk soil as influenced by long-term application of mineral and organic fertilizers," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 58(7), pages 316-321.
    3. M. Kulhánek & J. Balík & J. Černý & F. Vašák & Š. Shejbalová, 2014. "Influence of long-term fertilizer application on changes of the content of Mehlich-3 estimated soil macronutrients," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 60(4), pages 151-157.
    4. M. Kulhánek & J. Balík & J. Černý & V. Vaněk, 2009. "Evaluation of phosphorus mobility in soil using different extraction methods," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 55(7), pages 267-272.
    5. M. Kulhánek & J. Černý & J. Balík & V. Vaněk & O. Sedlář, 2011. "Influence of the nitrogen-sulfur fertilizing on the content of different sulfur fractions in soil," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 57(12), pages 553-558.
    6. R. Wuenscher & H. Unterfrauner & R. Peticzka & F. Zehetner, 2015. "A comparison of 14 soil phosphorus extraction methods applied to 50 agricultural soils from Central Europe," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 61(2), pages 86-96.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Káš & G. Mühlbachová & H. Kusá & M. Pechová, 2016. "Soil phosphorus and potassium availability in long-term field experiments with organic and mineral fertilization," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 62(12), pages 558-565.
    2. M. Kulhánek & J. Balík & J. Černý & O. Sedlář & F. Vašák, 2016. "Evaluating of soil sulfur forms changes under different fertilizing systems during long-term field experiments," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 62(9), pages 408-415.
    3. Franz ZEHETNER & Rosemarie WUENSCHER & Robert PETICZKA & Hans UNTERFRAUNER, 2018. "Correlation of extractable soil phosphorus (P) with plant P uptake: 14 extraction methods applied to 50 agricultural soils from Central Europe," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 64(4), pages 192-201.
    4. Evelin Kármen Juhász & Rita Kremper & Áron Béni & Andrea Balláné Kovács, 2021. "Residual effect of superphosphate on the sulphur status of soil and plants in a long-term NPK fertilisation experiment on a Chernozem in Hungary," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 67(11), pages 625-632.
    5. L. Strnad & M. Hejcman & V. Křišťálová & P. Hejcmanová & V. Pavlů, 2010. "Mechanical weeding of Rumex obtusifolius L. under different N, P and K availabilities in permanent grassland," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 56(8), pages 393-399.
    6. J. Skládanka & V. Adam & P. Ryant & P. Doležal & Z. Havlíček, 2010. "Can Festulolium, Dactylis glomerata and Arrhenatherum elatius be used for extension of the autumn grazing season in Central Europe?," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 56(10), pages 488-498.
    7. Klaus A. JAROSCH & Jakob SANTNER & Mohammed Masud PARVAGE & Martin Hubert GERZABEK & Franz ZEHETNER & Holger KIRCHMANN, 2018. "Four soil phosphorus (P) tests evaluated by plant P uptake and P balancing in the Ultuna long-term field experiment," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 64(9), pages 441-447.
    8. Jiří ZBÍRAL & Michaela SMATANOVÁ & Pavel NĚMEC, 2018. "Sulphur status in agricultural soils determined using the Mehlich 3 method," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 64(6), pages 255-259.
    9. Jiří Balík & Jindřich Černý & Martin Kulhánek & Ondřej Sedlář & Pavel Suran, 2019. "Balance of potassium in two long-term field experiments with different fertilization treatments," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 65(5), pages 225-232.
    10. K.J. Jankowski & Ł. Kijewski & S. Krzebietke & W.S. Budzyński, 2015. "The effect of sulphur fertilization on macronutrient concentrations in the post-harvest biomass of mustard," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 61(6), pages 266-272.
    11. H.W. Scherer & G. Welp & S. Förster, 2012. "Sulfur fractions in particle-size separates as influenced by long-term application of mineral and organic fertilizers," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 58(5), pages 242-248.
    12. Martin Kulhánek & Jindřich Černý & Jiří Balík & Ondřej Sedlář & Filip Vašák, 2019. "Changes of soil bioavailable phosphorus content in the long-term field fertilizing experiment," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 14(4), pages 240-245.
    13. M. Kulhánek & J. Balík & J. Černý & F. Vašák & Š. Shejbalová, 2014. "Influence of long-term fertilizer application on changes of the content of Mehlich-3 estimated soil macronutrients," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 60(4), pages 151-157.
    14. R. Wuenscher & H. Unterfrauner & R. Peticzka & F. Zehetner, 2015. "A comparison of 14 soil phosphorus extraction methods applied to 50 agricultural soils from Central Europe," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 61(2), pages 86-96.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlpse:v:64:y:2018:i:9:id:372-2018-pse. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.