IDEAS home Printed from https://ideas.repec.org/a/caa/jnlpps/v56y2020i1id21-2019-pps.html
   My bibliography  Save this article

Biological effects of oomycetes elicitins

Author

Listed:
  • Martina Janků

    (Department of Biochemistry, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic)

  • Lucie Činčalová

    (Department of Biochemistry, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic)

  • Lenka Luhová

    (Department of Biochemistry, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic)

  • Jan Lochman

    (Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic)

  • Marek Petřivalský

    (Department of Biochemistry, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic)

Abstract

Successful plant defence responses to pathogen challenges are based on fast and specific pathogen recognition and plant reaction mechanisms. Elicitins, proteinaceous elicitors secreted by the Phytophthora and Pythium species, were first described in Phytophthora culture filtrates as proteins able to induce a hypersensitive response (HR) and resistance in tobacco at low concentrations. Later, they were classified as microbial-associated molecular patterns (MAMPs) able to induce defences in a variety of plant species. In this review, we present a comprehensive summary of the actual knowledge on the representative elicitins and their structure, perception and activation of plant signalling pathways. The current research of elicitins has been focused on a detailed understanding of the molecular mechanisms of the elicitin recognition by plant cells. Moreover, the possibility of elicitin involvement in the establishment and enhancement of plant host resistance to a broad spectrum of pathogens has been intensively studied.

Suggested Citation

  • Martina Janků & Lucie Činčalová & Lenka Luhová & Jan Lochman & Marek Petřivalský, 2020. "Biological effects of oomycetes elicitins," Plant Protection Science, Czech Academy of Agricultural Sciences, vol. 56(1), pages 1-8.
  • Handle: RePEc:caa:jnlpps:v:56:y:2020:i:1:id:21-2019-pps
    DOI: 10.17221/21/2019-PPS
    as

    Download full text from publisher

    File URL: http://pps.agriculturejournals.cz/doi/10.17221/21/2019-PPS.html
    Download Restriction: free of charge

    File URL: http://pps.agriculturejournals.cz/doi/10.17221/21/2019-PPS.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/21/2019-PPS?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Byung-Wook Yun & Angela Feechan & Minghui Yin & Noor B. B. Saidi & Thierry Le Bihan & Manda Yu & John W. Moore & Jeong-Gu Kang & Eunjung Kwon & Steven H. Spoel & Jacqueline A. Pallas & Gary J. Loake, 2011. "S-nitrosylation of NADPH oxidase regulates cell death in plant immunity," Nature, Nature, vol. 478(7368), pages 264-268, October.
    2. Jonathan D. G. Jones & Jeffery L. Dangl, 2006. "The plant immune system," Nature, Nature, vol. 444(7117), pages 323-329, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul Vincelli, 2016. "Genetic Engineering and Sustainable Crop Disease Management: Opportunities for Case-by-Case Decision-Making," Sustainability, MDPI, vol. 8(5), pages 1-22, May.
    2. Rongrong Zhang & Yu Wu & Xiangru Qu & Wenjuan Yang & Qin Wu & Lin Huang & Qiantao Jiang & Jian Ma & Yazhou Zhang & Pengfei Qi & Guoyue Chen & Yunfeng Jiang & Youliang Zheng & Xiaojie Wang & Yuming Wei, 2024. "The RING-finger ubiquitin E3 ligase TaPIR1 targets TaHRP1 for degradation to suppress chloroplast function," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Farhan Ali & Qingchun Pan & Genshen Chen & Kashif Rafiq Zahid & Jianbing Yan, 2013. "Evidence of Multiple Disease Resistance (MDR) and Implication of Meta-Analysis in Marker Assisted Selection," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-12, July.
    4. Soohyun Oh & Myung-Shin Kim & Hui Jeong Kang & Taewon Kim & Junhyeong Kong & Doil Choi, 2024. "Conserved effector families render Phytophthora species vulnerable to recognition by NLR receptors in nonhost plants," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Karine de Guillen & Diana Ortiz-Vallejo & Jérome Gracy & Elisabeth Fournier & Thomas Kroj & André Padilla, 2015. "Structure Analysis Uncovers a Highly Diverse but Structurally Conserved Effector Family in Phytopathogenic Fungi," PLOS Pathogens, Public Library of Science, vol. 11(10), pages 1-27, October.
    6. Conner J. Rogan & Yin-Yuin Pang & Sophie D. Mathews & Sydney E. Turner & Alexandra J. Weisberg & Silke Lehmann & Doris Rentsch & Jeffrey C. Anderson, 2024. "Transporter-mediated depletion of extracellular proline directly contributes to plant pattern-triggered immunity against a bacterial pathogen," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Md Mijanur Rahman Rajib & Kuikui Li & Md Saikat Hossain Bhuiyan & Wenxia Wang & Jin Gao & Heng Yin, 2024. "Konjac Glucomannan Oligosaccharides (KGMOS) Confers Innate Immunity against Phytophthora nicotianae in Tobacco," Agriculture, MDPI, vol. 14(8), pages 1-17, August.
    8. Matheus Thomas Kuska & Jan Behmann & Mahsa Namini & Erich-Christian Oerke & Ulrike Steiner & Anne-Katrin Mahlein, 2019. "Discovering coherency of specific gene expression and optical reflectance properties of barley genotypes differing for resistance reactions against powdery mildew," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-20, March.
    9. Gelsomina Manganiello & Nicola Nicastro & Luciano Ortenzi & Federico Pallottino & Corrado Costa & Catello Pane, 2024. "Trichoderma Biocontrol Performances against Baby-Lettuce Fusarium Wilt Surveyed by Hyperspectral Imaging-Based Machine Learning and Infrared Thermography," Agriculture, MDPI, vol. 14(2), pages 1-18, February.
    10. Fabien Lonjon & Yan Lai & Nasrin Askari & Niharikaa Aiyar & Cedoljub Bundalovic-Torma & Bradley Laflamme & Pauline W. Wang & Darrell Desveaux & David S. Guttman, 2024. "The effector-triggered immunity landscape of tomato against Pseudomonas syringae," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    11. Ana Cruz-Silva & Andreia Figueiredo & Mónica Sebastiana, 2021. "First Insights into the Effect of Mycorrhizae on the Expression of Pathogen Effectors during the Infection of Grapevine with Plasmopara viticola," Sustainability, MDPI, vol. 13(3), pages 1-12, January.
    12. Manish Kumar & Amandeep Brar & Monika Yadav & Aakash Chawade & V. Vivekanand & Nidhi Pareek, 2018. "Chitinases—Potential Candidates for Enhanced Plant Resistance towards Fungal Pathogens," Agriculture, MDPI, vol. 8(7), pages 1-12, June.
    13. Costas Bouyioukos & Matthew J Moscou & Nicolas Champouret & Inmaculada Hernández-Pinzón & Eric R Ward & Brande B H Wulff, 2013. "Characterisation and Analysis of the Aegilops sharonensis Transcriptome, a Wild Relative of Wheat in the Sitopsis Section," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-1, August.
    14. Carmen Santos & Susana Trindade Leitão, 2023. "The Exceptionally Large Genomes of the Fabeae Tribe: Comparative Genomics and Applications in Abiotic and Biotic Stress Studies," Agriculture, MDPI, vol. 14(1), pages 1-21, December.
    15. Jan Bettgenhaeuser & Inmaculada Hernández-Pinzón & Andrew M. Dawson & Matthew Gardiner & Phon Green & Jodie Taylor & Matthew Smoker & John N. Ferguson & Peter Emmrich & Amelia Hubbard & Rosemary Bay, 2021. "The barley immune receptor Mla recognizes multiple pathogens and contributes to host range dynamics," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    16. Lyudmila Plotnikova & Violetta Pozherukova & Valeria Knaub & Yuryi Kashuba, 2022. "What Was the Reason for the Durable Effect of Sr31 against Wheat Stem Rust?," Agriculture, MDPI, vol. 12(12), pages 1-18, December.
    17. Jianghua Cai & Sayantan Panda & Yana Kazachkova & Eden Amzallag & Zhengguo Li & Sagit Meir & Ilana Rogachev & Asaph Aharoni, 2024. "A NAC triad modulates plant immunity by negatively regulating N-hydroxy pipecolic acid biosynthesis," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    18. Beatriz Val-Torregrosa & Mireia Bundó & Blanca San Segundo, 2021. "Crosstalk between Nutrient Signalling Pathways and Immune Responses in Rice," Agriculture, MDPI, vol. 11(8), pages 1-21, August.
    19. Sisay Kidane Alemu & Ayele Badebo Huluka & Kassahun Tesfaye & Teklehaimanot Haileselassie & Cristobal Uauy, 2021. "Genome-wide association mapping identifies yellow rust resistance loci in Ethiopian durum wheat germplasm," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-28, May.
    20. Adeeb Rahman & Neeti Sanan-Mishra, 2024. "When an Intruder Comes Home: GM and GE Strategies to Combat Virus Infection in Plants," Agriculture, MDPI, vol. 14(2), pages 1-26, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlpps:v:56:y:2020:i:1:id:21-2019-pps. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.