IDEAS home Printed from https://ideas.repec.org/a/caa/jnljfs/v68y2022i12id135-2022-jfs.html
   My bibliography  Save this article

The impact of agricultural land afforestation on air temperatures near the surface

Author

Listed:
  • Jan Vopravil

    (Research Institute for Soil and Water Conservation, Prague, the Czech Republic
    Department of Land Use and Improvement, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, the Czech Republic)

  • Pavel Formánek

    (Research Institute for Soil and Water Conservation, Prague, the Czech Republic)

  • Darina Heřmanovská

    (Research Institute for Soil and Water Conservation, Prague, the Czech Republic)

  • Tomáš Khel

    (Research Institute for Soil and Water Conservation, Prague, the Czech Republic)

  • Karel Jacko

    (Agrio s.r.o., the Czech Republic)

Abstract

Many studies showed that afforestation increases carbon storage and it can have effects on physical, chemical and biological properties of soil. Afforestation can affect local and regional climate and these effects differ between tropical, temperate and boreal areas. Forests are also efficient in protecting soils against erosion and their flood mitigation functions or other benefits are described in different publications. In this study, the pattern of air temperatures (20 cm, 40 cm and 60 cm above the surface) was studied 10 years after the afforestation of agricultural land (warm, mild dry region of the Czech Republic) with a mixture of broadleaved tree species (Quercus robur L., Quercus rubra L. and Acer platanoides L.) or monospecific Pinus sylvestris L. stand. The aim of our study was to find out the pattern of air temperatures (20 cm, 40 cm and 60 cm above the surface) on two plots (one of the plots ‒ old beech trees, the other plot ‒ clearing) in a beech (Fagus sylvatica L.) forest in a mildly warm, mildly wet region of the Czech Republic. The afforestation of agriculturally used land led to air temperature cooling and to a reduction of the amplitude of maximum and minimum temperatures. The average air temperature (from April 2021 to the beginning of November 2021) decreased by 0.7-1.1 °C on the afforested plots compared with the agriculturally used plot. In the beech forest, the average temperature decreased on the plot with clearing compared with the old beech trees (from the middle of September 2021 to the middle of November 2021). Our results confirm the benefits of afforestation to climate change mitigation; buffering of extreme temperatures is important for the human thermal comfort.

Suggested Citation

  • Jan Vopravil & Pavel Formánek & Darina Heřmanovská & Tomáš Khel & Karel Jacko, 2022. "The impact of agricultural land afforestation on air temperatures near the surface," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 68(12), pages 485-495.
  • Handle: RePEc:caa:jnljfs:v:68:y:2022:i:12:id:135-2022-jfs
    DOI: 10.17221/135/2022-JFS
    as

    Download full text from publisher

    File URL: http://jfs.agriculturejournals.cz/doi/10.17221/135/2022-JFS.html
    Download Restriction: free of charge

    File URL: http://jfs.agriculturejournals.cz/doi/10.17221/135/2022-JFS.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/135/2022-JFS?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Vopravil & V. Podrázský & M. Batysta & P. Novák & L. Havelková & M. Hrabalíková, 2015. "Identification of agricultural soils suitable for afforestation in the Czech Republic using a soil database," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 61(4), pages 141-147.
    2. Yan Li & Maosheng Zhao & Safa Motesharrei & Qiaozhen Mu & Eugenia Kalnay & Shuangcheng Li, 2015. "Local cooling and warming effects of forests based on satellite observations," Nature Communications, Nature, vol. 6(1), pages 1-8, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jan Vopravil & Pavel Formánek & Tomáš Khel & Karel Jacko, 2024. "Water content in soil afforested with a mixture of broadleaves or Scots pine," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 70(2), pages 91-101.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali Ismaeel & Amos P. K. Tai & Erone Ghizoni Santos & Heveakore Maraia & Iris Aalto & Jan Altman & Jiří Doležal & Jonas J. Lembrechts & José Luís Camargo & Juha Aalto & Kateřina Sam & Lair Cristina Av, 2024. "Patterns of tropical forest understory temperatures," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Guoqing Chen & Mingjiu Wang & Zhengjia Liu & Wenfeng Chi, 2017. "The Biogeophysical Effects of Revegetation around Mining Areas: A Case Study of Dongsheng Mining Areas in Inner Mongolia," Sustainability, MDPI, vol. 9(4), pages 1-9, April.
    3. Qun Liu & Zhaoping Yang & Cuirong Wang & Fang Han, 2019. "Temporal-Spatial Variations and Influencing Factor of Land Use Change in Xinjiang, Central Asia, from 1995 to 2015," Sustainability, MDPI, vol. 11(3), pages 1-14, January.
    4. Yitao Li & Zhao-Liang Li & Hua Wu & Chenghu Zhou & Xiangyang Liu & Pei Leng & Peng Yang & Wenbin Wu & Ronglin Tang & Guo-Fei Shang & Lingling Ma, 2023. "Biophysical impacts of earth greening can substantially mitigate regional land surface temperature warming," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Martin Baláš & Josef Gallo & Marcin Czacharowski & Michal Pástor & Jaroslav Jankovič & Igor Štefančík & Ivan Kuneš & Hubert Hasenauer, 2024. "Administrative system of afforestation in the Czech Republic: A long journey to a new forest," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 70(2), pages 41-63.
    6. Jan Vopravil & Pavel Formánek & Jaroslava Janků & Ondřej Holubík & Tomáš Khel, 2021. "Early changes in soil organic carbon following afforestation of former agricultural land," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 16(4), pages 228-236.
    7. Duveiller, Gregory & Caporaso, Luca & Abad-Viñas, Raul & Perugini, Lucia & Grassi, Giacomo & Arneth, Almut & Cescatti, Alessandro, 2020. "Local biophysical effects of land use and land cover change: towards an assessment tool for policy makers," Land Use Policy, Elsevier, vol. 91(C).
    8. Abhijeet Mishra & Florian Humpenöder & Galina Churkina & Christopher P. O. Reyer & Felicitas Beier & Benjamin Leon Bodirsky & Hans Joachim Schellnhuber & Hermann Lotze-Campen & Alexander Popp, 2022. "Land use change and carbon emissions of a transformation to timber cities," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    9. Ivo KUPKA & Martin BALÁŠ & Stanislav MILTNER, 2018. "Quantitative and qualitative evaluation of Northern red oak (Quercus rubra L.) in arid areas of North-Western Bohemia," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 64(2), pages 53-58.
    10. V. Podrázský & M. Fulín & H. Prknová & F. Beran & M. Třeštík, 2016. "Changes of agricultural land characteristics as a result of afforestation using introduced tree species," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 62(2), pages 72-79.
    11. Galina Churkina & Alan Organschi, 2022. "Will a Transition to Timber Construction Cool the Climate?," Sustainability, MDPI, vol. 14(7), pages 1-8, April.
    12. Jun Ge & Qi Liu & Beilei Zan & Zhiqiang Lin & Sha Lu & Bo Qiu & Weidong Guo, 2022. "Deforestation intensifies daily temperature variability in the northern extratropics," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    13. Jonas Schwaab & Ronny Meier & Gianluca Mussetti & Sonia Seneviratne & Christine Bürgi & Edouard L. Davin, 2021. "The role of urban trees in reducing land surface temperatures in European cities," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    14. Yue Li & Paulo M. Brando & Douglas C. Morton & David M. Lawrence & Hui Yang & James T. Randerson, 2022. "Deforestation-induced climate change reduces carbon storage in remaining tropical forests," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    15. Jan Vopravil & Pavel Formánek & Darina Heřmanovská & Tomáš Khel & Karel Jacko, 2021. "The impact of agricultural land afforestation on soil water content in Central Bohemia," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 67(11), pages 512-521.
    16. Hao Luo & Johannes Quaas & Yong Han, 2024. "Decreased cloud cover partially offsets the cooling effects of surface albedo change due to deforestation," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnljfs:v:68:y:2022:i:12:id:135-2022-jfs. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.