IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v82y2002i1p111-133.html
   My bibliography  Save this article

Variance Estimation for High-Dimensional Regression Models

Author

Listed:
  • Spokoiny, Vladimir

Abstract

The paper is concerned with the problem of variance estimation for a high-dimensional regression model. The results show that the accuracy n-1/2 of variance estimation can be achieved only under some restrictions on smoothness properties of the regression function and on the dimensionality of the model. In particular, for a two times differentiable regression function, the rate n-1/2 is achievable only for dimensionality smaller or equal to 8. For a higher dimensional model, the optimal accuracy is n-4/d which is worse than n-1/2. The rate optimal estimating procedure is presented.

Suggested Citation

  • Spokoiny, Vladimir, 2002. "Variance Estimation for High-Dimensional Regression Models," Journal of Multivariate Analysis, Elsevier, vol. 82(1), pages 111-133, July.
  • Handle: RePEc:eee:jmvana:v:82:y:2002:i:1:p:111-133
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(01)92023-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hardle, W. & Tsybakov, A., 1997. "Local polynomial estimators of the volatility function in nonparametric autoregression," Journal of Econometrics, Elsevier, vol. 81(1), pages 223-242, November.
    2. Fan, Jianqing & Yao, Qiwei, 1998. "Efficient estimation of conditional variance functions in stochastic regression," LSE Research Online Documents on Economics 6635, London School of Economics and Political Science, LSE Library.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sugiyama Masashi & Müller Klaus-Robert, 2005. "Input-dependent estimation of generalization error under covariate shift," Statistics & Risk Modeling, De Gruyter, vol. 23(4), pages 249-279, April.
    2. Hall, Peter & Yatchew, Adonis, 2010. "Nonparametric least squares estimation in derivative families," Journal of Econometrics, Elsevier, vol. 157(2), pages 362-374, August.
    3. Paola Gloria Ferrario, 2018. "Partitioning estimation of local variance based on nearest neighbors under censoring," Statistical Papers, Springer, vol. 59(2), pages 423-447, June.
    4. Mendez, Guillermo & Lohr, Sharon, 2011. "Estimating residual variance in random forest regression," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 2937-2950, November.
    5. Wang, WenWu & Yu, Ping, 2017. "Asymptotically optimal differenced estimators of error variance in nonparametric regression," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 125-143.
    6. Giurcanu Mihai & Spokoiny Vladimir, 2004. "Confidence estimation of the covariance function of stationary and locally stationary processes," Statistics & Risk Modeling, De Gruyter, vol. 22(4), pages 283-300, April.
    7. Inder Tecuapetla-Gómez & Axel Munk, 2017. "Autocovariance Estimation in Regression with a Discontinuous Signal and m-Dependent Errors: A Difference-Based Approach," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(2), pages 346-368, June.
    8. P. G. Ferrario & H. Walk, 2012. "Nonparametric partitioning estimation of residual and local variance based on first and second nearest neighbours," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(4), pages 1019-1039, December.
    9. Scheder, Regine & Dette, Holger, 2005. "Strictly monotone and smooth nonparametric regression for two or more variables," Technical Reports 2005,17, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    10. Liitiäinen, Elia & Corona, Francesco & Lendasse, Amaury, 2010. "Residual variance estimation using a nearest neighbor statistic," Journal of Multivariate Analysis, Elsevier, vol. 101(4), pages 811-823, April.
    11. Juhyun Park & Burkhardt Seifert, 2010. "Local additive estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(2), pages 171-191, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martins-Filho, Carlos & Yao, Feng & Torero, Maximo, 2018. "Nonparametric Estimation Of Conditional Value-At-Risk And Expected Shortfall Based On Extreme Value Theory," Econometric Theory, Cambridge University Press, vol. 34(1), pages 23-67, February.
    2. Heather L. R. Tierney, 2019. "Forecasting with the Nonparametric Exclusion-from-Core Inflation Persistence Model Using Real-Time Data," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 25(1), pages 39-63, February.
    3. Biqing Cai & Dag Tjøstheim, 2015. "Nonparametric Regression Estimation for Multivariate Null Recurrent Processes," Econometrics, MDPI, vol. 3(2), pages 1-24, April.
    4. Scholz, Achim & Neumeyer, Natalie & Munk, Axel, 2004. "Nonparametric Analysis of Covariance : the Case of Inhomogeneous and Heteroscedastic Noise," Technical Reports 2004,28, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    5. Enno Mammen & Jens Perch Nielsen & Michael Scholz & Stefan Sperlich, 2019. "Conditional Variance Forecasts for Long-Term Stock Returns," Risks, MDPI, vol. 7(4), pages 1-22, November.
    6. Benjamin R. Auer & Benjamin Mögel, 2016. "How Accurate are Modern Value-at-Risk Estimators Derived from Extreme Value Theory?," CESifo Working Paper Series 6288, CESifo.
    7. Pérez-González, A. & Vilar-Fernández, J.M. & González-Manteiga, W., 2010. "Nonparametric variance function estimation with missing data," Journal of Multivariate Analysis, Elsevier, vol. 101(5), pages 1123-1142, May.
    8. Chen, Gongmeng & Choi, Yoon K. & Zhou, Yong, 2005. "Nonparametric estimation of structural change points in volatility models for time series," Journal of Econometrics, Elsevier, vol. 126(1), pages 79-114, May.
    9. Josephine Njeri Ngure & Anthony Gichuhi Waititu, 2021. "Consistency of an Estimator for Change Point in Volatility of Financial Returns," Journal of Mathematics Research, Canadian Center of Science and Education, vol. 13(1), pages 1-56, February.
    10. Tierney, Heather L.R., 2011. "Real-time data revisions and the PCE measure of inflation," Economic Modelling, Elsevier, vol. 28(4), pages 1763-1773, July.
    11. Li, Degui & Li, Runze, 2016. "Local composite quantile regression smoothing for Harris recurrent Markov processes," Journal of Econometrics, Elsevier, vol. 194(1), pages 44-56.
    12. Benjamin Mögel & Benjamin R. Auer, 2018. "How accurate are modern Value-at-Risk estimators derived from extreme value theory?," Review of Quantitative Finance and Accounting, Springer, vol. 50(4), pages 979-1030, May.
    13. Matthieu Garcin & Clément Goulet, 2015. "Non-parameteric news impact curve: a variational approach," Documents de travail du Centre d'Economie de la Sorbonne 15086rr, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Feb 2017.
    14. Gloria González-Rivera & Tae-Hwy Lee, 2007. "Nonlinear Time Series in Financial Forecasting," Working Papers 200803, University of California at Riverside, Department of Economics, revised Feb 2008.
    15. Tierney, Heather L.R., 2009. "A Local Examination for Persistence in Exclusions-from-Core Measures of Inflation Using Real-Time Data," MPRA Paper 13383, University Library of Munich, Germany, revised 03 Feb 2009.
    16. Panagiotis Avramidis, 2016. "Adaptive likelihood estimator of conditional variance function," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(1), pages 132-151, March.
    17. Fabienne Comte, 2004. "Kernel deconvolution of stochastic volatility models," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(4), pages 563-582, July.
    18. Tierney, Heather L.R., 2009. "Evaluating Exclusion-from-Core Measures of Inflation using Real-Time Data," MPRA Paper 17856, University Library of Munich, Germany.
    19. Chauvet, Marcelle & Tierney, Heather L. R., 2007. "Real Time Changes in Monetary Policy," MPRA Paper 16199, University Library of Munich, Germany, revised Apr 2009.
    20. Heather L. R. Tierney, 2012. "Examining the ability of core inflation to capture the overall trend of total inflation," Applied Economics, Taylor & Francis Journals, vol. 44(4), pages 493-514, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:82:y:2002:i:1:p:111-133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.