IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v79y2009i20p2200-2207.html
   My bibliography  Save this article

Notes on drift estimation for certain non-recurrent diffusion processes from sampled data

Author

Listed:
  • Shimizu, Yasutaka

Abstract

Given discrete samples from Ornstein-Uhlenbeck processes, we consider two kinds of approximated MLE's for the drift parameter, which are asymptotically efficient in ergodic case. Our interest is the rate of convergence of those estimators when the process is non-recurrent. We add a remark when the underlying process has a slightly more general drift.

Suggested Citation

  • Shimizu, Yasutaka, 2009. "Notes on drift estimation for certain non-recurrent diffusion processes from sampled data," Statistics & Probability Letters, Elsevier, vol. 79(20), pages 2200-2207, October.
  • Handle: RePEc:eee:stapro:v:79:y:2009:i:20:p:2200-2207
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(09)00269-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kasonga, R. A., 1988. "The consistency of a non-linear least squares estimator from diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 30(2), pages 263-275, December.
    2. Dietz Hans M. & Kutoyants Yury A., 2003. "Parameter estimation for some non-recurrent solutions of SDE," Statistics & Risk Modeling, De Gruyter, vol. 21(1), pages 29-46, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xiaohu & Yu, Jun, 2016. "Double asymptotics for explosive continuous time models," Journal of Econometrics, Elsevier, vol. 193(1), pages 35-53.
    2. Hui Jiang & Xing Dong, 2015. "Parameter estimation for the non-stationary Ornstein–Uhlenbeck process with linear drift," Statistical Papers, Springer, vol. 56(1), pages 257-268, February.
    3. Yasutaka Shimizu, 2012. "Local asymptotic mixed normality for discretely observed non-recurrent Ornstein–Uhlenbeck processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(1), pages 193-211, February.
    4. Bercu, Bernard & Coutin, Laure & Savy, Nicolas, 2012. "Sharp large deviations for the non-stationary Ornstein–Uhlenbeck process," Stochastic Processes and their Applications, Elsevier, vol. 122(10), pages 3393-3424.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yasutaka Shimizu, 2012. "Local asymptotic mixed normality for discretely observed non-recurrent Ornstein–Uhlenbeck processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(1), pages 193-211, February.
    2. Bercu, Bernard & Coutin, Laure & Savy, Nicolas, 2012. "Sharp large deviations for the non-stationary Ornstein–Uhlenbeck process," Stochastic Processes and their Applications, Elsevier, vol. 122(10), pages 3393-3424.
    3. Andreas Neuenkirch & Samy Tindel, 2014. "A least square-type procedure for parameter estimation in stochastic differential equations with additive fractional noise," Statistical Inference for Stochastic Processes, Springer, vol. 17(1), pages 99-120, April.
    4. Yasutaka Shimizu, 2012. "Estimation of parameters for discretely observed diffusion processes with a variety of rates for information," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(3), pages 545-575, June.
    5. Bishwal Jaya P. N., 2009. "Berry–Esseen inequalities for discretely observed diffusions," Monte Carlo Methods and Applications, De Gruyter, vol. 15(3), pages 229-239, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:79:y:2009:i:20:p:2200-2207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.