IDEAS home Printed from https://ideas.repec.org/a/bpj/sagmbi/v8y2009i1n33.html
   My bibliography  Save this article

A Multivariate Growth Curve Model for Ranking Genes in Replicated Time Course Microarray Data

Author

Listed:
  • Hamid Jemila S

    (The Hospital for Sick Children and University of Toronto)

  • Beyene Joseph

    (The Hospital for Sick Children and University of Toronto)

Abstract

Gene ranking problem in time course microarray experiments is challenging since gene expression levels between different time points are correlated. This is because, expression values at successive time points are usually taken from the same organism, tissue or culture. Moreover, time dependency of gene expression values is usually of interest and often is the biological problem that motivates the experiment. We propose a multivariate growth curve model for ranking genes and estimating mean gene expression profiles in replicated time course microarray data. The approach takes the within individual correlation as well as the temporal ordering into consideration. Moreover, time is incorporated as a continuous variable in the model to account for the temporal pattern. Polynomial profiles are assumed to describe the time dependence and a transformation incorporating information across the genes is used. A moderated likelihood ratio test is then applied to the transformed data to get a statistic for ranking genes according to the difference in expression profiles among biological groups. The methodology is presented in a general setup and could be used for one sample as well as more than one sample problem. The estimation is done in a multivariate framework in which information from all the groups involved is used for better inference. Moreover, the within individual correlation as well as information across genes entered in the estimation through a moderated covariance matrix. We assess the performance of our method using simulation studies and illustrate the results with publicly available real time course microarray data.

Suggested Citation

  • Hamid Jemila S & Beyene Joseph, 2009. "A Multivariate Growth Curve Model for Ranking Genes in Replicated Time Course Microarray Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-28, July.
  • Handle: RePEc:bpj:sagmbi:v:8:y:2009:i:1:n:33
    DOI: 10.2202/1544-6115.1417
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1544-6115.1417
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1544-6115.1417?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. von Rosen, Dietrich, 1989. "Maximum likelihood estimators in multivariate linear normal models," Journal of Multivariate Analysis, Elsevier, vol. 31(2), pages 187-200, November.
    2. Danh V. Nguyen & A. Bulak Arpat & Naisyin Wang & Raymond J. Carroll, 2002. "DNA Microarray Experiments: Biological and Technological Aspects," Biometrics, The International Biometric Society, vol. 58(4), pages 701-717, December.
    3. Yuan, Ming & Kendziorski, Christina, 2006. "Hidden Markov Models for Microarray Time Course Data in Multiple Biological Conditions," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1323-1332, December.
    4. Schäfer Juliane & Strimmer Korbinian, 2005. "A Shrinkage Approach to Large-Scale Covariance Matrix Estimation and Implications for Functional Genomics," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 4(1), pages 1-32, November.
    5. Dietrich Rosen, 1995. "Residuals in the growth curve model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 47(1), pages 129-136, January.
    6. von Rosen, Dietrich, 1990. "Moments for a multivariate linear model with an application to the growth curve model," Journal of Multivariate Analysis, Elsevier, vol. 35(2), pages 243-259, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sayantee Jana & Narayanaswamy Balakrishnan & Dietrich Rosen & Jemila Seid Hamid, 2017. "High dimensional extension of the growth curve model and its application in genetics," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(2), pages 273-292, June.
    2. Sayantee Jana & Narayanaswamy Balakrishnan & Jemila S. Hamid, 2020. "Inference in the Growth Curve Model under Multivariate Skew Normal Distribution," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(1), pages 34-69, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hamid, Jemila S. & Beyene, Joseph & von Rosen, Dietrich, 2011. "A novel trace test for the mean parameters in a multivariate growth curve model," Journal of Multivariate Analysis, Elsevier, vol. 102(2), pages 238-251, February.
    2. Fang, Kai-Tai & Wang, Song-Gui & von Rosen, Dietrich, 2006. "Restricted expected multivariate least squares," Journal of Multivariate Analysis, Elsevier, vol. 97(3), pages 619-632, March.
    3. Jian-Xin Pan & Kai-Tai Fang, 1996. "Influential observation in the growth curve model with unstructured covariance matrix," Computational Statistics & Data Analysis, Elsevier, vol. 22(1), pages 71-87, June.
    4. Sayantee Jana & Narayanaswamy Balakrishnan & Dietrich Rosen & Jemila Seid Hamid, 2017. "High dimensional extension of the growth curve model and its application in genetics," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(2), pages 273-292, June.
    5. Sayantee Jana & Narayanaswamy Balakrishnan & Jemila S. Hamid, 2020. "Inference in the Growth Curve Model under Multivariate Skew Normal Distribution," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(1), pages 34-69, May.
    6. Hannart, Alexis & Naveau, Philippe, 2014. "Estimating high dimensional covariance matrices: A new look at the Gaussian conjugate framework," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 149-162.
    7. Pan, Jianxin, 2004. "Discordant outlier detection in the growth curve model with Rao's simple covariance structure," Statistics & Probability Letters, Elsevier, vol. 69(2), pages 135-142, August.
    8. Avagyan, Vahe & Nogales, Francisco J., 2015. "D-trace Precision Matrix Estimation Using Adaptive Lasso Penalties," DES - Working Papers. Statistics and Econometrics. WS 21775, Universidad Carlos III de Madrid. Departamento de Estadística.
    9. Parrish, Rudolph S. & Spencer III, Horace J. & Xu, Ping, 2009. "Distribution modeling and simulation of gene expression data," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1650-1660, March.
    10. Li-Xuan Qin & Steven G. Self, 2006. "The Clustering of Regression Models Method with Applications in Gene Expression Data," Biometrics, The International Biometric Society, vol. 62(2), pages 526-533, June.
    11. Jianqing Fan & Xu Han, 2017. "Estimation of the false discovery proportion with unknown dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1143-1164, September.
    12. Wang Xiaoming & Dinu Irina & Liu Wei & Yasui Yutaka, 2011. "Linear Combination Test for Hierarchical Gene Set Analysis," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-18, March.
    13. Seunghwan Lee & Sang Cheol Kim & Donghyeon Yu, 2023. "An efficient GPU-parallel coordinate descent algorithm for sparse precision matrix estimation via scaled lasso," Computational Statistics, Springer, vol. 38(1), pages 217-242, March.
    14. Bala Rajaratnam & Dario Vincenzi, 2016. "A theoretical study of Stein's covariance estimator," Biometrika, Biometrika Trust, vol. 103(3), pages 653-666.
    15. Wang, Christina Dan & Chen, Zhao & Lian, Yimin & Chen, Min, 2022. "Asset selection based on high frequency Sharpe ratio," Journal of Econometrics, Elsevier, vol. 227(1), pages 168-188.
    16. Viet Anh Nguyen & Daniel Kuhn & Peyman Mohajerin Esfahani, 2018. "Distributionally Robust Inverse Covariance Estimation: The Wasserstein Shrinkage Estimator," Papers 1805.07194, arXiv.org.
    17. Christian Bongiorno, 2020. "Bootstraps Regularize Singular Correlation Matrices," Working Papers hal-02536278, HAL.
    18. van Wieringen, Wessel N. & Stam, Koen A. & Peeters, Carel F.W. & van de Wiel, Mark A., 2020. "Updating of the Gaussian graphical model through targeted penalized estimation," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
    19. Mr. Jorge A Chan-Lau, 2017. "Variance Decomposition Networks: Potential Pitfalls and a Simple Solution," IMF Working Papers 2017/107, International Monetary Fund.
    20. Boulesteix Anne-Laure, 2006. "Reader's Reaction to "Dimension Reduction for Classification with Gene Expression Microarray Data" by Dai et al (2006)," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 5(1), pages 1-7, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:8:y:2009:i:1:n:33. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.