IDEAS home Printed from https://ideas.repec.org/a/bpj/sagmbi/v18y2019i5p9n2.html
   My bibliography  Save this article

A novel individualized drug repositioning approach for predicting personalized candidate drugs for type 1 diabetes mellitus

Author

Listed:
  • Zheng Hong

    (Department of Endocrine, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian City 116023, Liaoning Province, China)

Abstract

The existence of high cost-consuming and high rate of drug failures suggests the promotion of drug repositioning in drug discovery. Existing drug repositioning techniques mainly focus on discovering candidate drugs for a kind of disease, and are not suitable for predicting candidate drugs for an individual sample. Type 1 diabetes mellitus (T1DM) is a disorder of glucose homeostasis caused by autoimmune destruction of the pancreatic β-cell. Here, we present a novel single sample drug repositioning approach for predicting personalized candidate drugs for T1DM. Our method is based on the observation of drug-disease associations by measuring the similarities of individualized pathway aberrance induced by disease and various drugs using a Kolmogorov-Smirnov weighted Enrichment Score algorithm. Using this method, we predicted several underlying candidate drugs for T1DM. Some of them have been reported for the treatment of diabetes mellitus, and some with a current indication to treat other diseases might be repurposed to treat T1DM. This study conducts drug discovery via detecting the functional connections among disease and drug action, on a personalized or customized basis. Our framework provides a rational way for systematic personalized drug discovery of complex diseases and contributes to the future application of custom therapeutic decisions.

Suggested Citation

  • Zheng Hong, 2019. "A novel individualized drug repositioning approach for predicting personalized candidate drugs for type 1 diabetes mellitus," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 18(5), pages 1-9, October.
  • Handle: RePEc:bpj:sagmbi:v:18:y:2019:i:5:p:9:n:2
    DOI: 10.1515/sagmb-2018-0052
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/sagmb-2018-0052
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/sagmb-2018-0052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael J. Keiser & Vincent Setola & John J. Irwin & Christian Laggner & Atheir I. Abbas & Sandra J. Hufeisen & Niels H. Jensen & Michael B. Kuijer & Roberto C. Matos & Thuy B. Tran & Ryan Whaley & Ri, 2009. "Predicting new molecular targets for known drugs," Nature, Nature, vol. 462(7270), pages 175-181, November.
    2. Leland H. Hartwell & John J. Hopfield & Stanislas Leibler & Andrew W. Murray, 1999. "From molecular to modular cell biology," Nature, Nature, vol. 402(6761), pages 47-52, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicola Bellomo & Richard Bingham & Mark A.J. Chaplain & Giovanni Dosi & Guido Forni & Damian A. Knopoff & John Lowengrub & Reidun Twarock & Maria Enrica Virgillito, 2020. "A multi-scale model of virus pandemic: Heterogeneous interactive entities in a globally connected world," LEM Papers Series 2020/16, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    2. Dong-Sheng Cao & Yi-Zeng Liang & Zhe Deng & Qian-Nan Hu & Min He & Qing-Song Xu & Guang-Hua Zhou & Liu-Xia Zhang & Zi-xin Deng & Shao Liu, 2013. "Genome-Scale Screening of Drug-Target Associations Relevant to Ki Using a Chemogenomics Approach," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-12, April.
    3. Lazaros K Gallos & Fabricio Q Potiguar & José S Andrade Jr & Hernan A Makse, 2013. "IMDB Network Revisited: Unveiling Fractal and Modular Properties from a Typical Small-World Network," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-8, June.
    4. T. Ochiai & J. C. Nacher, 2007. "Stochastic analysis of autoregulatory gene expression dynamics," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 14(4), pages 377-388, November.
    5. Qing-Ju Jiao & Yan-Kai Zhang & Lu-Ning Li & Hong-Bin Shen, 2011. "BinTree Seeking: A Novel Approach to Mine Both Bi-Sparse and Cohesive Modules in Protein Interaction Networks," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-12, November.
    6. Manfred Füllsack, 2011. "Firstness - As seen from the perspective of Complexity Research," E-LOGOS, Prague University of Economics and Business, vol. 2011(1), pages 1-19.
    7. Simeon D. Castle & Michiel Stock & Thomas E. Gorochowski, 2024. "Engineering is evolution: a perspective on design processes to engineer biology," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Romualdo Pastor-Satorras & Eric Smith & Ricard V. Solé, 2002. "Evolving Protein Interaction Networks through Gene Duplication," Working Papers 02-02-008, Santa Fe Institute.
    9. Frederic Li Mow Chee & Bruno Beernaert & Billie G. C. Griffith & Alexander E. P. Loftus & Yatendra Kumar & Jimi C. Wills & Martin Lee & Jessica Valli & Ann P. Wheeler & J. Douglas Armstrong & Maddy Pa, 2023. "Mena regulates nesprin-2 to control actin–nuclear lamina associations, trans-nuclear membrane signalling and gene expression," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    10. Joshua S Weitz & Philip N Benfey & Ned S Wingreen, 2007. "Evolution, Interactions, and Biological Networks," PLOS Biology, Public Library of Science, vol. 5(1), pages 1-3, January.
    11. Bo Xu & Hongfei Lin & Yang Chen & Zhihao Yang & Hongfang Liu, 2013. "Protein Complex Identification by Integrating Protein-Protein Interaction Evidence from Multiple Sources," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-12, December.
    12. Miguel Fribourg & Diomedes E Logothetis & Javier González-Maeso & Stuart C Sealfon & Belén Galocha-Iragüen & Fernando Las-Heras Andrés & Vladimir Brezina, 2017. "Elucidation of molecular kinetic schemes from macroscopic traces using system identification," PLOS Computational Biology, Public Library of Science, vol. 13(2), pages 1-34, February.
    13. Scholtens, Denise & Miron, Alexander & M. Merchant, Faisal & Miller, Arden & L. Miron, Penelope & Dirk Iglehart, J. & Gentleman, Robert, 2004. "Analyzing factorial designed microarray experiments," Journal of Multivariate Analysis, Elsevier, vol. 90(1), pages 19-43, July.
    14. Robrecht Cannoodt & Joeri Ruyssinck & Jan Ramon & Katleen De Preter & Yvan Saeys, 2018. "IncGraph: Incremental graphlet counting for topology optimisation," PLOS ONE, Public Library of Science, vol. 13(4), pages 1-11, April.
    15. Margaritis Voliotis & Philipp Thomas & Ramon Grima & Clive G Bowsher, 2016. "Stochastic Simulation of Biomolecular Networks in Dynamic Environments," PLOS Computational Biology, Public Library of Science, vol. 12(6), pages 1-18, June.
    16. Pilar García-Peñarrubia & Juan J Gálvez & Jesús Gálvez, 2011. "Spatio-Temporal Dependence of the Signaling Response in Immune-Receptor Trafficking Networks Regulated by Cell Density: A Theoretical Model," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-12, July.
    17. Emre Guney & Baldo Oliva, 2014. "Analysis of the Robustness of Network-Based Disease-Gene Prioritization Methods Reveals Redundancy in the Human Interactome and Functional Diversity of Disease-Genes," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-11, April.
    18. Richard D Smith & Jing Lu & Heather A Carlson, 2017. "Are there physicochemical differences between allosteric and competitive ligands?," PLOS Computational Biology, Public Library of Science, vol. 13(11), pages 1-18, November.
    19. Bin Chen & Ying Ding & David J Wild, 2012. "Assessing Drug Target Association Using Semantic Linked Data," PLOS Computational Biology, Public Library of Science, vol. 8(7), pages 1-10, July.
    20. Cui, Xue-Mei & Yoon, Chang No & Youn, Hyejin & Lee, Sang Hoon & Jung, Jean S. & Han, Seung Kee, 2017. "Dynamic burstiness of word-occurrence and network modularity in textbook systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 487(C), pages 103-110.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:18:y:2019:i:5:p:9:n:2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.