A penalized regression approach for DNA copy number study using the sequencing data
Author
Abstract
Suggested Citation
DOI: 10.1515/sagmb-2018-0001
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Robert Tibshirani & Michael Saunders & Saharon Rosset & Ji Zhu & Keith Knight, 2005. "Sparsity and smoothness via the fused lasso," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(1), pages 91-108, February.
- Qian, Junhui & Su, Liangjun, 2016.
"Shrinkage Estimation Of Regression Models With Multiple Structural Changes,"
Econometric Theory, Cambridge University Press, vol. 32(6), pages 1376-1433, December.
- Junhui Qian & Liangjun Su, 2014. "Shrinkage Estimation of Regression Models with Multiple Structural Changes," Working Papers 06-2014, Singapore Management University, School of Economics.
- Pan, Jianmin & Chen, Jiahua, 2006. "Application of modified information criterion to multiple change point problems," Journal of Multivariate Analysis, Elsevier, vol. 97(10), pages 2221-2241, November.
- Nancy R. Zhang & David O. Siegmund, 2007. "A Modified Bayes Information Criterion with Applications to the Analysis of Comparative Genomic Hybridization Data," Biometrics, The International Biometric Society, vol. 63(1), pages 22-32, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Fryzlewicz, Piotr, 2020. "Detecting possibly frequent change-points: Wild Binary Segmentation 2 and steepest-drop model selection," LSE Research Online Documents on Economics 103430, London School of Economics and Political Science, LSE Library.
- Cho, Haeran & Kirch, Claudia, 2024. "Data segmentation algorithms: Univariate mean change and beyond," Econometrics and Statistics, Elsevier, vol. 30(C), pages 76-95.
- Ma, Chenchen & Tu, Yundong, 2023. "Shrinkage estimation of multiple threshold factor models," Journal of Econometrics, Elsevier, vol. 235(2), pages 1876-1892.
- Sean Jewell & Paul Fearnhead & Daniela Witten, 2022. "Testing for a change in mean after changepoint detection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1082-1104, September.
- Qian, Junhui & Su, Liangjun, 2016. "Shrinkage estimation of common breaks in panel data models via adaptive group fused Lasso," Journal of Econometrics, Elsevier, vol. 191(1), pages 86-109.
- Ma, Shujie & Su, Liangjun, 2018. "Estimation of large dimensional factor models with an unknown number of breaks," Journal of Econometrics, Elsevier, vol. 207(1), pages 1-29.
- Ma, Chenchen & Tu, Yundong, 2023. "Group fused Lasso for large factor models with multiple structural breaks," Journal of Econometrics, Elsevier, vol. 233(1), pages 132-154.
- Weijie Cui & Yong Li, 2023. "Bicluster Analysis of Heterogeneous Panel Data via M-Estimation," Mathematics, MDPI, vol. 11(10), pages 1-19, May.
- Gordon J. Ross, 2020. "Tracking the evolution of literary style via Dirichlet–multinomial change point regression," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(1), pages 149-167, January.
- Hosik Choi & Eunjung Song & Seung-sik Hwang & Woojoo Lee, 2018. "A modified generalized lasso algorithm to detect local spatial clusters for count data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(4), pages 537-563, October.
- Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
- Schroeder, Anna Louise & Fryzlewicz, Piotr, 2013.
"Adaptive trend estimation in financial time series via multiscale change-point-induced basis recovery,"
LSE Research Online Documents on Economics
54934, London School of Economics and Political Science, LSE Library.
- Schröder, Anna Louise & Fryzlewicz, Piotr, 2013. "Adaptive trend estimation in financial time series via multiscale change-point-induced basis recovery," MPRA Paper 52379, University Library of Munich, Germany.
- Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
- Bailly, Hugo & Mortier, Frédéric & Giraud, Gaël, 2024. "Empirical analysis of a debt-augmented Goodwin model for the United States," Structural Change and Economic Dynamics, Elsevier, vol. 70(C), pages 619-633.
- Yize Zhao & Matthias Chung & Brent A. Johnson & Carlos S. Moreno & Qi Long, 2016. "Hierarchical Feature Selection Incorporating Known and Novel Biological Information: Identifying Genomic Features Related to Prostate Cancer Recurrence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1427-1439, October.
- Jie Jian & Peijun Sang & Mu Zhu, 2024. "Two Gaussian Regularization Methods for Time-Varying Networks," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(4), pages 853-873, December.
- Li, Houjian & Tang, Mengqian & Cao, Andi & Guo, Lili, 2024. "How to reduce firm pollution discharges: Does political leaders' gender matter?," Technological Forecasting and Social Change, Elsevier, vol. 204(C).
- Francis X. Diebold & Kamil Yilmaz, 2016. "Trans-Atlantic Equity Volatility Connectedness: U.S. and European Financial Institutions, 2004–2014," Journal of Financial Econometrics, Oxford University Press, vol. 14(1), pages 81-127.
- Yana Melnykov & Marcus Perry, 2024. "On Robust Change Point Detection and Estimation in Multisubject Studies," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 86(2), pages 827-879, August.
- Jian Guo & Elizaveta Levina & George Michailidis & Ji Zhu, 2010. "Pairwise Variable Selection for High-Dimensional Model-Based Clustering," Biometrics, The International Biometric Society, vol. 66(3), pages 793-804, September.
More about this item
Keywords
change point analysis; CNVs; fused LASSO; modified information criterion; next generation sequencing data; penalized regression;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:18:y:2019:i:4:p:14:n:1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.