IDEAS home Printed from https://ideas.repec.org/a/bpj/sagmbi/v17y2018i5p11n2.html
   My bibliography  Save this article

A test for detecting differential indirect trans effects between two groups of samples

Author

Listed:
  • Chaturvedi Nimisha

    (Afdeling Epidemiologie en Biostatistiek, Amsterdam Public Health Research Institute, Medische Faculteit (F-vleugel), VU Medisch Centrum, 1007 MB Amsterdam, The Netherlands)

  • Menezes Renée X. de

    (Afdeling Epidemiologie en Biostatistiek, Amsterdam Public Health Research Institute, Medische Faculteit (F-vleugel), VU Medisch Centrum, 1007 MB Amsterdam, The Netherlands)

  • Goeman Jelle J.

    (Department of Biomedical Data Sciences, Room Number S5-P, LUMC Main Building, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands)

  • Wieringen Wessel van

    (Afdeling Epidemiologie en Biostatistiek, Amsterdam Public Health Research Institute, Medische Faculteit (F-vleugel), VU Medisch Centrum, 1007 MB Amsterdam, The Netherlands)

Abstract

Integrative analysis of copy number and gene expression data can help in understanding the cis and trans effect of copy number aberrations on transcription levels of genes involved in a pathway. To analyse how these copy number mediated gene-gene interactions differ between groups of samples we propose a new method, named dNET. Our method uses ridge regression to model the network topology involving one gene’s expression level, its gene dosage and the expression levels of other genes in the network. The interaction parameters are estimated by fitting the model per gene for all samples together. However, instead of testing for differential network topology per gene, dNET tests for an overall difference in estimated parameters between two groups of samples and produces a single p-value. With the help of several simulation studies, we show that dNET can detect differential network nodes with high accuracy and low rate of false positives even in the presence of differential cis effects. We also apply dNET to publicly available TCGA cancer datasets and identify pathways where copy number mediated gene-gene interactions differ between samples with cancer stage lower than stage 3 and samples with cancer stage 3 or above.

Suggested Citation

  • Chaturvedi Nimisha & Menezes Renée X. de & Goeman Jelle J. & Wieringen Wessel van, 2018. "A test for detecting differential indirect trans effects between two groups of samples," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 17(5), pages 1-11, October.
  • Handle: RePEc:bpj:sagmbi:v:17:y:2018:i:5:p:11:n:2
    DOI: 10.1515/sagmb-2017-0058
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/sagmb-2017-0058
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/sagmb-2017-0058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jelle J. Goeman & Sara A. Van De Geer & Hans C. Van Houwelingen, 2006. "Testing against a high dimensional alternative," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 477-493, June.
    2. Phipson Belinda & Smyth Gordon K, 2010. "Permutation P-values Should Never Be Zero: Calculating Exact P-values When Permutations Are Randomly Drawn," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-16, October.
    3. Timothée Flutre & Xiaoquan Wen & Jonathan Pritchard & Matthew Stephens, 2013. "A Statistical Framework for Joint eQTL Analysis in Multiple Tissues," PLOS Genetics, Public Library of Science, vol. 9(5), pages 1-13, May.
    4. van Wieringen Wessel N & Berkhof Johannes & van de Wiel Mark A, 2010. "A Random Coefficients Model for Regional Co-Expression Associated with DNA Copy Number," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-30, June.
    5. C. M. Kendziorski & M. Chen & M. Yuan & H. Lan & A. D. Attie, 2006. "Statistical Methods for Expression Quantitative Trait Loci (eQTL) Mapping," Biometrics, The International Biometric Society, vol. 62(1), pages 19-27, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masha Shunko & Julie Niederhoff & Yaroslav Rosokha, 2018. "Humans Are Not Machines: The Behavioral Impact of Queueing Design on Service Time," Management Science, INFORMS, vol. 64(1), pages 453-473, January.
    2. Romero, Julian & Rosokha, Yaroslav, 2018. "Constructing strategies in the indefinitely repeated prisoner’s dilemma game," European Economic Review, Elsevier, vol. 104(C), pages 185-219.
    3. Silke Janitza & Ender Celik & Anne-Laure Boulesteix, 2018. "A computationally fast variable importance test for random forests for high-dimensional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(4), pages 885-915, December.
    4. Bo Jiang & Jun S. Liu, 2015. "Bayesian Partition Models for Identifying Expression Quantitative Trait Loci," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1350-1361, December.
    5. Long Qu & Tobias Guennel & Scott L. Marshall, 2013. "Linear Score Tests for Variance Components in Linear Mixed Models and Applications to Genetic Association Studies," Biometrics, The International Biometric Society, vol. 69(4), pages 883-892, December.
    6. Xiaoquan Wen, 2017. "Robust Bayesian FDR Control Using Bayes Factors, with Applications to Multi-tissue eQTL Discovery," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(1), pages 28-49, June.
    7. Zihuai He & Min Zhang & Seunggeun Lee & Jennifer A. Smith & Sharon L. R. Kardia & V. Diez Roux & Bhramar Mukherjee, 2017. "Set-Based Tests for the Gene–Environment Interaction in Longitudinal Studies," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 966-978, July.
    8. van Wieringen Wessel N. & van de Wiel Mark A., 2014. "Penalized differential pathway analysis of integrative oncogenomics studies," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(2), pages 141-158, April.
    9. Wei Sun, 2012. "A Statistical Framework for eQTL Mapping Using RNA-seq Data," Biometrics, The International Biometric Society, vol. 68(1), pages 1-11, March.
    10. Bin Guo & Song Xi Chen, 2016. "Tests for high dimensional generalized linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(5), pages 1079-1102, November.
    11. Angela L. Riffo-Campos & Guillermo Ayala & Juan Domingo, 2021. "Ordering of Omics Features Using Beta Distributions on Montecarlo p -Values," Mathematics, MDPI, vol. 9(11), pages 1-18, June.
    12. Gong, Siliang & Zhang, Kai & Liu, Yufeng, 2018. "Efficient test-based variable selection for high-dimensional linear models," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 17-31.
    13. Rui Wang & Xingzhong Xu, 2021. "A Bayesian-motivated test for high-dimensional linear regression models with fixed design matrix," Statistical Papers, Springer, vol. 62(4), pages 1821-1852, August.
    14. Baddeley, Adrian & Hardegen, Andrew & Lawrence, Thomas & Milne, Robin K. & Nair, Gopalan & Rakshit, Suman, 2017. "On two-stage Monte Carlo tests of composite hypotheses," Computational Statistics & Data Analysis, Elsevier, vol. 114(C), pages 75-87.
    15. Enrico Petretto & Leonardo Bottolo & Sarah R Langley & Matthias Heinig & Chris McDermott-Roe & Rizwan Sarwar & Michal Pravenec & Norbert Hübner & Timothy J Aitman & Stuart A Cook & Sylvia Richardson, 2010. "New Insights into the Genetic Control of Gene Expression using a Bayesian Multi-tissue Approach," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-13, April.
    16. Ma, Yingying & Lan, Wei & Wang, Hansheng, 2015. "Testing predictor significance with ultra high dimensional multivariate responses," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 275-286.
    17. Lebrec Jeremie J & Stijnen Theo & van Houwelingen Hans C, 2010. "Dealing with Heterogeneity between Cohorts in Genomewide SNP Association Studies," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-22, January.
    18. Jonathan A. L. Gelfond & Joseph G. Ibrahim & Fei Zou, 2007. "Proximity Model for Expression Quantitative Trait Loci (eQTL) Detection," Biometrics, The International Biometric Society, vol. 63(4), pages 1108-1116, December.
    19. Jesse Hemerik & Jelle J. Goeman, 2021. "Another Look at the Lady Tasting Tea and Differences Between Permutation Tests and Randomisation Tests," International Statistical Review, International Statistical Institute, vol. 89(2), pages 367-381, August.
    20. Jesse Hemerik & Jelle J. Goeman & Livio Finos, 2020. "Robust testing in generalized linear models by sign flipping score contributions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(3), pages 841-864, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:17:y:2018:i:5:p:11:n:2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.