IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v112y2017i519p966-978.html
   My bibliography  Save this article

Set-Based Tests for the Gene–Environment Interaction in Longitudinal Studies

Author

Listed:
  • Zihuai He
  • Min Zhang
  • Seunggeun Lee
  • Jennifer A. Smith
  • Sharon L. R. Kardia
  • V. Diez Roux
  • Bhramar Mukherjee

Abstract

We propose a generalized score type test for set-based inference for the gene–environment interaction with longitudinally measured quantitative traits. The test is robust to misspecification of within subject correlation structure and has enhanced power compared to existing alternatives. Unlike tests for marginal genetic association, set-based tests for the gene–environment interaction face the challenges of a potentially misspecified and high-dimensional main effect model under the null hypothesis. We show that our proposed test is robust to main effect misspecification of environmental exposure and genetic factors under the gene–environment independence condition. When genetic and environmental factors are dependent, the method of sieves is further proposed to eliminate potential bias due to a misspecified main effect of a continuous environmental exposure. A weighted principal component analysis approach is developed to perform dimension reduction when the number of genetic variants in the set is large relative to the sample size. The methods are motivated by an example from the Multi-Ethnic Study of Atherosclerosis (MESA), investigating interaction between measures of neighborhood environment and genetic regions on longitudinal measures of blood pressure over a study period of about seven years with four exams. Supplementary materials for this article are available online.

Suggested Citation

  • Zihuai He & Min Zhang & Seunggeun Lee & Jennifer A. Smith & Sharon L. R. Kardia & V. Diez Roux & Bhramar Mukherjee, 2017. "Set-Based Tests for the Gene–Environment Interaction in Longitudinal Studies," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 966-978, July.
  • Handle: RePEc:taf:jnlasa:v:112:y:2017:i:519:p:966-978
    DOI: 10.1080/01621459.2016.1252266
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2016.1252266
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2016.1252266?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jelle J. Goeman & Sara A. Van De Geer & Hans C. Van Houwelingen, 2006. "Testing against a high dimensional alternative," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 477-493, June.
    2. Newey, Whitney K., 1997. "Convergence rates and asymptotic normality for series estimators," Journal of Econometrics, Elsevier, vol. 79(1), pages 147-168, July.
    3. Zihuai He & Min Zhang & Seunggeun Lee & Jennifer A. Smith & Xiuqing Guo & Walter Palmas & Sharon L. R. Kardia & Ana V. Diez Roux & Bhramar Mukherjee, 2015. "Set‐based tests for genetic association in longitudinal studies," Biometrics, The International Biometric Society, vol. 71(3), pages 606-615, September.
    4. Zihuai He & Min Zhang & Xiaowei Zhan & Qing Lu, 2014. "Modeling and testing for joint association using a genetic random field model," Biometrics, The International Biometric Society, vol. 70(3), pages 471-479, September.
    5. Arend Voorman & Thomas Lumley & Barbara McKnight & Kenneth Rice, 2011. "Behavior of QQ-Plots and Genomic Control in Studies of Gene-Environment Interaction," PLOS ONE, Public Library of Science, vol. 6(5), pages 1-7, May.
    6. Vansteelandt, Stijn & VanderWeele, Tyler J. & Tchetgen, Eric J. & Robins, James M., 2008. "Multiply Robust Inference for Statistical Interactions," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1693-1704.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    2. Ai, Chunrong & Chen, Xiaohong, 2007. "Estimation of possibly misspecified semiparametric conditional moment restriction models with different conditioning variables," Journal of Econometrics, Elsevier, vol. 141(1), pages 5-43, November.
    3. Ichimura, Hidehiko & Todd, Petra E., 2007. "Implementing Nonparametric and Semiparametric Estimators," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 74, Elsevier.
    4. Nishiyama, Yoshihiko & Hitomi, Kohtaro & Kawasaki, Yoshinori & Jeong, Kiho, 2011. "A consistent nonparametric test for nonlinear causality—Specification in time series regression," Journal of Econometrics, Elsevier, vol. 165(1), pages 112-127.
    5. Xiaohong Chen & Demian Pouzo, 2012. "Estimation of Nonparametric Conditional Moment Models With Possibly Nonsmooth Generalized Residuals," Econometrica, Econometric Society, vol. 80(1), pages 277-321, January.
    6. Christoph Breunig, 2019. "Goodness-of-Fit Tests based on Series Estimators in Nonparametric Instrumental Regression," Papers 1909.10133, arXiv.org.
    7. Whitney K. Newey & Frank Windmeijer, 2005. "GMM with many weak moment conditions," CeMMAP working papers CWP18/05, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    8. Wan, Alan T.K. & Zhang, Xinyu & Zou, Guohua, 2010. "Least squares model averaging by Mallows criterion," Journal of Econometrics, Elsevier, vol. 156(2), pages 277-283, June.
    9. Mustafa Koroglu & Yiguo Sun, 2016. "Functional-Coefficient Spatial Durbin Models with Nonparametric Spatial Weights: An Application to Economic Growth," Econometrics, MDPI, vol. 4(1), pages 1-16, February.
    10. Yanchun Jin, 2016. "Nonparametric tests for the effect of treatment on conditional variance," KIER Working Papers 948, Kyoto University, Institute of Economic Research.
    11. Kim Kyoo il & Petrin Amil, 2022. "A Generalized Non-Parametric Instrumental Variable-Control Function Approach to Estimation in Nonlinear Settings," Journal of Econometric Methods, De Gruyter, vol. 11(1), pages 91-125, January.
    12. Abhimanyu Gupta & Myung Hwan Seo, 2023. "Robust Inference on Infinite and Growing Dimensional Time‐Series Regression," Econometrica, Econometric Society, vol. 91(4), pages 1333-1361, July.
    13. Chen, Xiaohong & Pouzo, Demian, 2009. "Efficient estimation of semiparametric conditional moment models with possibly nonsmooth residuals," Journal of Econometrics, Elsevier, vol. 152(1), pages 46-60, September.
    14. Alberto Abadie, 2000. "Semiparametric Estimation of Instrumental Variable Models for Causal Effects," NBER Technical Working Papers 0260, National Bureau of Economic Research, Inc.
    15. de Jong, Robert M., 2002. "A note on "Convergence rates and asymptotic normality for series estimators": uniform convergence rates," Journal of Econometrics, Elsevier, vol. 111(1), pages 1-9, November.
    16. Xiaohong Chen & Timothy M. Christensen, 2015. "Optimal sup-norm rates, adaptivity and inference in nonparametric instrumental variables estimation," CeMMAP working papers 32/15, Institute for Fiscal Studies.
    17. Breunig, Christoph & Mammen, Enno & Simoni, Anna, 2018. "Nonparametric estimation in case of endogenous selection," Journal of Econometrics, Elsevier, vol. 202(2), pages 268-285.
    18. Chunrong Ai & Oliver Linton & Kaiji Motegi & Zheng Zhang, 2021. "A unified framework for efficient estimation of general treatment models," Quantitative Economics, Econometric Society, vol. 12(3), pages 779-816, July.
    19. Tizheng Li & Xiaojuan Kang, 2022. "Variable selection of higher-order partially linear spatial autoregressive model with a diverging number of parameters," Statistical Papers, Springer, vol. 63(1), pages 243-285, February.
    20. Santos, Andres, 2011. "Instrumental variable methods for recovering continuous linear functionals," Journal of Econometrics, Elsevier, vol. 161(2), pages 129-146, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:112:y:2017:i:519:p:966-978. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.