IDEAS home Printed from https://ideas.repec.org/a/bpj/mcmeap/v23y2017i4p287-306n4.html
   My bibliography  Save this article

HMM with emission process resulting from a special combination of independent Markovian emissions

Author

Listed:
  • Nasroallah Abdelaziz

    (Department of Mathematics, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, Marrakesh, Morocco)

  • Elkimakh Karima

    (Department of Mathematics, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, Marrakesh, Morocco)

Abstract

One of the most used variants of hidden Markov models (HMMs) is the standard case where the time is discrete and the state spaces (hidden and observed spaces) are finite. In this framework, we are interested in HMMs whose emission process results from a combination of independent Markov chains. Principally, we assume that the emission process evolves as follows: given a hidden state realization k at time t, an emission is a realization of a Markov chain Ytk{Y_{t}^{k}} at time t, and for two different hidden states k and k′{k^{\prime}}, Ytk{Y_{t}^{k}} and Ytk′{Y_{t}^{k^{\prime}}} are assumed independent. Given the hidden process, the considered emission process selects its realizations from independent and homogeneous Markov chains evolving simultaneously. In this paper, we propose to study the three known basic problems of such an HMM variant, by deriving corresponding formulas and algorithms. This allows us to enrich the set of application scenarios of HMMs. Numerical examples are presented to show the applicability of our proposed approach by deriving statistical estimations.

Suggested Citation

  • Nasroallah Abdelaziz & Elkimakh Karima, 2017. "HMM with emission process resulting from a special combination of independent Markovian emissions," Monte Carlo Methods and Applications, De Gruyter, vol. 23(4), pages 287-306, December.
  • Handle: RePEc:bpj:mcmeap:v:23:y:2017:i:4:p:287-306:n:4
    DOI: 10.1515/mcma-2017-0117
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/mcma-2017-0117
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/mcma-2017-0117?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Toby A. Patterson & Alison Parton & Roland Langrock & Paul G. Blackwell & Len Thomas & Ruth King, 2017. "Statistical modelling of individual animal movement: an overview of key methods and a discussion of practical challenges," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(4), pages 399-438, October.
    2. R. J. Boys & D. A. Henderson & D. J. Wilkinson, 2000. "Detecting homogeneous segments in DNA sequences by using hidden Markov models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 49(2), pages 269-285.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Toryn L. J. Schafer & Christopher K. Wikle & Jay A. VonBank & Bart M. Ballard & Mitch D. Weegman, 2020. "A Bayesian Markov Model with Pólya-Gamma Sampling for Estimating Individual Behavior Transition Probabilities from Accelerometer Classifications," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 365-382, September.
    2. Mevin B. Hooten & Ruth King & Roland Langrock, 2017. "Guest Editor’s Introduction to the Special Issue on “Animal Movement Modeling”," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(3), pages 224-231, September.
    3. Roland Langrock & David L. Borchers, 2017. "Guest editors’ introduction to the special issue on “Ecological Statistics”," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(4), pages 345-347, October.
    4. Andreas C. Georgiou & Alexandra Papadopoulou & Pavlos Kolias & Haris Palikrousis & Evanthia Farmakioti, 2021. "On State Occupancies, First Passage Times and Duration in Non-Homogeneous Semi-Markov Chains," Mathematics, MDPI, vol. 9(15), pages 1-17, July.
    5. Elkimakh Karima & Nasroallah Abdelaziz, 2020. "Hidden Markov Model with Markovian emission," Monte Carlo Methods and Applications, De Gruyter, vol. 26(4), pages 303-313, December.
    6. Michael A. Spence & Evalyne W. Muiruri & David L. Maxwell & Scott Davis & Dave Sheahan, 2021. "The application of continuous‐time Markov chain models in the analysis of choice flume experiments," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 1103-1123, August.
    7. Antonello Maruotti & Antonio Punzo, 2021. "Initialization of Hidden Markov and Semi‐Markov Models: A Critical Evaluation of Several Strategies," International Statistical Review, International Statistical Institute, vol. 89(3), pages 447-480, December.
    8. Diaz, Stephanie G. & DeAngelis, Donald L. & Gaines, Michael S. & Purdon, Andrew & Mole, Michael A. & van Aarde, Rudi J., 2021. "Development and validation of a spatially-explicit agent-based model for space utilization by African savanna elephants (Loxodonta africana) based on determinants of movement," Ecological Modelling, Elsevier, vol. 447(C).
    9. Husmeier Dirk & Mantzaris Alexander V., 2008. "Addressing the Shortcomings of Three Recent Bayesian Methods for Detecting Interspecific Recombination in DNA Sequence Alignments," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-41, November.
    10. Nur, Darfiana & Allingham, David & Rousseau, Judith & Mengersen, Kerrie L. & McVinish, Ross, 2009. "Bayesian hidden Markov model for DNA sequence segmentation: A prior sensitivity analysis," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1873-1882, March.
    11. Wilkinson, Darren J & KH Yeung, Stephen, 2004. "A sparse matrix approach to Bayesian computation in large linear models," Computational Statistics & Data Analysis, Elsevier, vol. 44(3), pages 493-516, January.
    12. Wolfgang P. Lehrach & Dirk Husmeier, 2009. "Segmenting bacterial and viral DNA sequence alignments with a trans‐dimensional phylogenetic factorial hidden Markov model," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(3), pages 307-327, July.
    13. Richard J. Boys & Daniel A. Henderson, 2004. "A Bayesian Approach to DNA Sequence Segmentation," Biometrics, The International Biometric Society, vol. 60(3), pages 573-581, September.
    14. Panagiotis Besbeas & Byron J. T. Morgan, 2017. "Variance estimation for integrated population models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(4), pages 439-460, October.
    15. Ethan Lawler & Kim Whoriskey & William H. Aeberhard & Chris Field & Joanna Mills Flemming, 2019. "The Conditionally Autoregressive Hidden Markov Model (CarHMM): Inferring Behavioural States from Animal Tracking Data Exhibiting Conditional Autocorrelation," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(4), pages 651-668, December.
    16. Joy, Ruth & Schick, Robert S. & Dowd, Michael & Margolina, Tetyana & Joseph, John E. & Thomas, Len, 2022. "A fine-scale marine mammal movement model for assessing long-term aggregate noise exposure," Ecological Modelling, Elsevier, vol. 464(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:mcmeap:v:23:y:2017:i:4:p:287-306:n:4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.