IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v464y2022ics0304380021003422.html
   My bibliography  Save this article

A fine-scale marine mammal movement model for assessing long-term aggregate noise exposure

Author

Listed:
  • Joy, Ruth
  • Schick, Robert S.
  • Dowd, Michael
  • Margolina, Tetyana
  • Joseph, John E.
  • Thomas, Len

Abstract

Understanding the impacts of anthropogenic sound on marine mammals is important for effective mitigation and management. Sound impacts can cause behavioral changes that lead to displacement from preferred habitat and can have negative influence on vital rates. Here, we develop a movement model to better understand and simulate how whales respond to anthropogenic sound over ecologically meaningful space and time scales. The stochastic model is based on a sequential Monte Carlo sampler (a particle filter). The movement model takes account of vertical dive information and is influenced by the underwater soundscape and the historical whale distribution in the region. In the absence of noise disturbance, the simulator is shown to recover the historical whale distribution in the region. When noise disturbance is incorporated, the whale’s behavioral response is determined through a dose–response function dependent on the received level of sound. The aggregate impact is assessed by considering both the duration of foraging loss and the spatial shift to alternate (and potentially less favorable) habitat. Persistence of the behavioral response in time is treated through a ‘disruption’ parameter. We apply the approach to a population of fin whales whose distribution overlaps naval sonar testing activities beside the Southern California range complex. The simulation shows the consequences of one year of naval sonar disturbance are a function of: i) how loud the sound source is, ii) where the disturbed whales are relative to preferred (high density) habitat, and iii) how long a whale takes before returning to a pre-disturbance state. The movement simulator developed here is a generic movement modeling tool that can be adapted for different species, different regions, and any acoustic disturbances with known impacts on animal populations.

Suggested Citation

  • Joy, Ruth & Schick, Robert S. & Dowd, Michael & Margolina, Tetyana & Joseph, John E. & Thomas, Len, 2022. "A fine-scale marine mammal movement model for assessing long-term aggregate noise exposure," Ecological Modelling, Elsevier, vol. 464(C).
  • Handle: RePEc:eee:ecomod:v:464:y:2022:i:c:s0304380021003422
    DOI: 10.1016/j.ecolmodel.2021.109798
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380021003422
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2021.109798?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pierre Del Moral & Arnaud Doucet & Ajay Jasra, 2006. "Sequential Monte Carlo samplers," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 411-436, June.
    2. Nabe-Nielsen, Jacob & Sibly, Richard M. & Tougaard, Jakob & Teilmann, Jonas & Sveegaard, Signe, 2014. "Effects of noise and by-catch on a Danish harbour porpoise population," Ecological Modelling, Elsevier, vol. 272(C), pages 242-251.
    3. Toby A. Patterson & Alison Parton & Roland Langrock & Paul G. Blackwell & Len Thomas & Ruth King, 2017. "Statistical modelling of individual animal movement: an overview of key methods and a discussion of practical challenges," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(4), pages 399-438, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. G. J. Senarathne & C. C. Drovandi & J. M. McGree, 2020. "Bayesian sequential design for Copula models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 454-478, June.
    2. Arnaud Dufays, 2016. "Evolutionary Sequential Monte Carlo Samplers for Change-Point Models," Econometrics, MDPI, vol. 4(1), pages 1-33, March.
    3. James Martin & Ajay Jasra & Emma McCoy, 2013. "Inference for a class of partially observed point process models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(3), pages 413-437, June.
    4. Mark Bognanni & John Zito, 2019. "Sequential Bayesian Inference for Vector Autoregressions with Stochastic Volatility," Working Papers 19-29, Federal Reserve Bank of Cleveland.
    5. Toryn L. J. Schafer & Christopher K. Wikle & Jay A. VonBank & Bart M. Ballard & Mitch D. Weegman, 2020. "A Bayesian Markov Model with Pólya-Gamma Sampling for Estimating Individual Behavior Transition Probabilities from Accelerometer Classifications," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 365-382, September.
    6. Karin Sinclair & Andrea E. Copping & Roel May & Finlay Bennet & Marijke Warnas & Muriel Perron & Åsa Elmqvist & Elise DeGeorge, 2018. "Resolving environmental effects of wind energy," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(4), July.
    7. Watson, Joseph W & Boyd, Robin & Dutta, Ritabrata & Vasdekis, Georgios & Walker, Nicola D. & Roy, Shovonlal & Everitt, Richard & Hyder, Kieran & Sibly, Richard M, 2022. "Incorporating environmental variability in a spatially-explicit individual-based model of European sea bass✰," Ecological Modelling, Elsevier, vol. 466(C).
    8. Saifuddin Syed & Alexandre Bouchard‐Côté & George Deligiannidis & Arnaud Doucet, 2022. "Non‐reversible parallel tempering: A scalable highly parallel MCMC scheme," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 321-350, April.
    9. Brignone, Riccardo & Gonzato, Luca & Lütkebohmert, Eva, 2023. "Efficient Quasi-Bayesian Estimation of Affine Option Pricing Models Using Risk-Neutral Cumulants," Journal of Banking & Finance, Elsevier, vol. 148(C).
    10. Mevin B. Hooten & Ruth King & Roland Langrock, 2017. "Guest Editor’s Introduction to the Special Issue on “Animal Movement Modeling”," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(3), pages 224-231, September.
    11. Lee Anthony & Caron Francois & Doucet Arnaud & Holmes Chris, 2012. "Bayesian Sparsity-Path-Analysis of Genetic Association Signal using Generalized t Priors," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(2), pages 1-31, January.
    12. Edward Herbst & Frank Schorfheide, 2014. "Sequential Monte Carlo Sampling For Dsge Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(7), pages 1073-1098, November.
    13. Beirne, John & Villafuerte, James & Zhang, Bryan (ed.), 2022. "Fintech and COVID-19: Impacts, Challenges, and Policy Priorities for Asia," ADBI Books, Asian Development Bank Institute, number 29, Décembre.
    14. Nguyen, Hoang & Virbickaitė, Audronė, 2023. "Modeling stock-oil co-dependence with Dynamic Stochastic MIDAS Copula models," Energy Economics, Elsevier, vol. 124(C).
    15. Naoki Awaya & Yasuhiro Omori, 2021. "Particle Rolling MCMC with Double-Block Sampling ," CIRJE F-Series CIRJE-F-1175, CIRJE, Faculty of Economics, University of Tokyo.
    16. Xiaohong Chen & Timothy M. Christensen & Elie Tamer, 2018. "Monte Carlo Confidence Sets for Identified Sets," Econometrica, Econometric Society, vol. 86(6), pages 1965-2018, November.
    17. James Hodgson & Adam M. Johansen & Murray Pollock, 2022. "Unbiased Simulation of Rare Events in Continuous Time," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 2123-2148, September.
    18. Dufays, Arnaud & Rombouts, Jeroen V.K., 2020. "Relevant parameter changes in structural break models," Journal of Econometrics, Elsevier, vol. 217(1), pages 46-78.
    19. Ettmeier, Stephanie & Kriwoluzky, Alexander, 2019. "Active, or passive? Revisiting the role of fiscal policy in the Great Inflation," VfS Annual Conference 2019 (Leipzig): 30 Years after the Fall of the Berlin Wall - Democracy and Market Economy 203609, Verein für Socialpolitik / German Economic Association.
    20. Nicolas Chopin & Mathieu Gerber, 2017. "Sequential quasi-Monte Carlo: Introduction for Non-Experts, Dimension Reduction, Application to Partly Observed Diffusion Processes," Working Papers 2017-35, Center for Research in Economics and Statistics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:464:y:2022:i:c:s0304380021003422. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.