IDEAS home Printed from https://ideas.repec.org/a/bpj/mcmeap/v26y2020i4p303-313n3.html
   My bibliography  Save this article

Hidden Markov Model with Markovian emission

Author

Listed:
  • Elkimakh Karima

    (Department of Mathematics, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, Marrakesh, Morocco)

  • Nasroallah Abdelaziz

    (Department of Mathematics, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, Marrakesh, Morocco)

Abstract

In our paper [A. Nasroallah and K. Elkimakh, HMM with emission process resulting from a special combination of independent Markovian emissions, Monte Carlo Methods Appl. 23 2017, 4, 287–306] we have studied, in a first scenario, the three fundamental hidden Markov problems assuming that, given the hidden process, the observed one selects emissions from a combination of independent Markov chains evolving at the same time. Here, we propose to conduct the same study with a second scenario assuming that given the hidden process, the emission process selects emissions from a combination of independent Markov chain evolving according to their own clock. Three basic numerical examples are studied to show the proper functioning of the iterative algorithm adapted to the proposed model.

Suggested Citation

  • Elkimakh Karima & Nasroallah Abdelaziz, 2020. "Hidden Markov Model with Markovian emission," Monte Carlo Methods and Applications, De Gruyter, vol. 26(4), pages 303-313, December.
  • Handle: RePEc:bpj:mcmeap:v:26:y:2020:i:4:p:303-313:n:3
    DOI: 10.1515/mcma-2020-2072
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/mcma-2020-2072
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/mcma-2020-2072?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. J. Boys & D. A. Henderson & D. J. Wilkinson, 2000. "Detecting homogeneous segments in DNA sequences by using hidden Markov models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 49(2), pages 269-285.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andreas C. Georgiou & Alexandra Papadopoulou & Pavlos Kolias & Haris Palikrousis & Evanthia Farmakioti, 2021. "On State Occupancies, First Passage Times and Duration in Non-Homogeneous Semi-Markov Chains," Mathematics, MDPI, vol. 9(15), pages 1-17, July.
    2. Nasroallah Abdelaziz & Elkimakh Karima, 2017. "HMM with emission process resulting from a special combination of independent Markovian emissions," Monte Carlo Methods and Applications, De Gruyter, vol. 23(4), pages 287-306, December.
    3. Husmeier Dirk & Mantzaris Alexander V., 2008. "Addressing the Shortcomings of Three Recent Bayesian Methods for Detecting Interspecific Recombination in DNA Sequence Alignments," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-41, November.
    4. Nur, Darfiana & Allingham, David & Rousseau, Judith & Mengersen, Kerrie L. & McVinish, Ross, 2009. "Bayesian hidden Markov model for DNA sequence segmentation: A prior sensitivity analysis," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1873-1882, March.
    5. Wilkinson, Darren J & KH Yeung, Stephen, 2004. "A sparse matrix approach to Bayesian computation in large linear models," Computational Statistics & Data Analysis, Elsevier, vol. 44(3), pages 493-516, January.
    6. Wolfgang P. Lehrach & Dirk Husmeier, 2009. "Segmenting bacterial and viral DNA sequence alignments with a trans‐dimensional phylogenetic factorial hidden Markov model," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(3), pages 307-327, July.
    7. Richard J. Boys & Daniel A. Henderson, 2004. "A Bayesian Approach to DNA Sequence Segmentation," Biometrics, The International Biometric Society, vol. 60(3), pages 573-581, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:mcmeap:v:26:y:2020:i:4:p:303-313:n:3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.