IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v161y2019icp76-83.html
   My bibliography  Save this article

Conversion of Mersenne Twister to double-precision floating-point numbers

Author

Listed:
  • Harase, Shin

Abstract

The 32-bit Mersenne Twister generator MT19937 is a widely used random number generator. To generate numbers with more than 32 bits in bit length, and particularly when converting into 53-bit double-precision floating-point numbers in [0,1) in the IEEE 754 format, the typical implementation concatenates two successive 32-bit integers and divides them by a power of 2. In this case, the 32-bit MT19937 is optimized in terms of its equidistribution properties (the so-called dimension of equidistribution with v-bit accuracy) under the assumption that one will mainly be using 32-bit output values, and hence the concatenation sometimes degrades the dimension of equidistribution compared with the simple use of 32-bit outputs. In this paper, we analyze such phenomena by investigating hidden F2-linear relations among the bits of high-dimensional outputs. Accordingly, we report that MT19937 with a specific lag set fails several statistical tests, such as the overlapping collision test, matrix rank test, and Hamming independence test.

Suggested Citation

  • Harase, Shin, 2019. "Conversion of Mersenne Twister to double-precision floating-point numbers," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 161(C), pages 76-83.
  • Handle: RePEc:eee:matcom:v:161:y:2019:i:c:p:76-83
    DOI: 10.1016/j.matcom.2018.08.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475418302040
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2018.08.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pierre L’Ecuyer & François Panneton, 2009. "F2-Linear Random Number Generators," International Series in Operations Research & Management Science, in: Christos Alexopoulos & David Goldsman & James R. Wilson (ed.), Advancing the Frontiers of Simulation, pages 169-193, Springer.
    2. Pierre L'Ecuyer & Richard Simard, 2014. "On the Lattice Structure of a Special Class of Multiple Recursive Random Number Generators," INFORMS Journal on Computing, INFORMS, vol. 26(3), pages 449-460, August.
    3. L’Ecuyer, Pierre & Simard, Richard, 2001. "On the performance of birthday spacings tests with certain families of random number generators," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 55(1), pages 131-137.
    4. Pierre L'Écuyer & Jean-François Cordeau & Richard Simard, 2000. "Close-Point Spatial Tests and Their Application to Random Number Generators," Operations Research, INFORMS, vol. 48(2), pages 308-317, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Akahori, Jirô & Kinuya, Masahiro & Sawai, Takashi & Yuasa, Tomooki, 2021. "An efficient weak Euler–Maruyama type approximation scheme of very high dimensional SDEs by orthogonal random variables," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 187(C), pages 540-565.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pierre L’Ecuyer & Paul Wambergue & Erwan Bourceret, 2020. "Spectral Analysis of the MIXMAX Random Number Generators," INFORMS Journal on Computing, INFORMS, vol. 32(1), pages 135-144, January.
    2. L’Ecuyer, Pierre & Munger, David & Oreshkin, Boris & Simard, Richard, 2017. "Random numbers for parallel computers: Requirements and methods, with emphasis on GPUs," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 135(C), pages 3-17.
    3. Pierre L'Ecuyer & Richard Simard, 2014. "On the Lattice Structure of a Special Class of Multiple Recursive Random Number Generators," INFORMS Journal on Computing, INFORMS, vol. 26(3), pages 449-460, August.
    4. Haramoto, Hiroshi & Matsumoto, Makoto, 2019. "Checking the quality of approximation of p-values in statistical tests for random number generators by using a three-level test," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 161(C), pages 66-75.
    5. Pierre L'Ecuyer & Richard Simard & E. Jack Chen & W. David Kelton, 2002. "An Object-Oriented Random-Number Package with Many Long Streams and Substreams," Operations Research, INFORMS, vol. 50(6), pages 1073-1075, December.
    6. L’Ecuyer, Pierre & Granger-Piché, Jacinthe, 2003. "Combined generators with components from different families," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 62(3), pages 395-404.
    7. Aljahdali Asia & Mascagni Michael, 2017. "Feistel-inspired scrambling improves the quality of linear congruential generators," Monte Carlo Methods and Applications, De Gruyter, vol. 23(2), pages 89-99, June.
    8. L'Ecuyer, Pierre, 2004. "Random number generation," Papers 2004,21, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    9. Michael S. Delgado & Christopher F. Parmeter, 2013. "Embarrassingly Easy Embarrassingly Parallel Processing in R: Implementation and Reproducibility," Working Papers 2013-06, University of Miami, Department of Economics.
    10. Grace, Adam W. & Wood, Ian A., 2012. "Approximating the tail of the Anderson–Darling distribution," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4301-4311.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:161:y:2019:i:c:p:76-83. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.