IDEAS home Printed from https://ideas.repec.org/a/bpj/mcmeap/v23y2017i2p101-110n7.html
   My bibliography  Save this article

Stochastic polynomial chaos expansion method for random Darcy equation

Author

Listed:
  • Shalimova Irina A.

    (Institute of Computational Mathematics and Mathematical Geophysics, Russian Academy of Sciences, Novosibirsk, Russia)

  • Sabelfeld Karl K.

    (Institute of Computational Mathematics and Mathematical Geophysics, Russian Academy of Sciences, Novosibirsk, Russia)

Abstract

A probabilistic collocation based polynomial chaos expansion method is developed for simulation of particle transport in porous medium. The hydraulic conductivity is assumed to be a random field of a given statistical structure. The flow is modeled in a two-dimensional domain with mixed Dirichlet–Neumann boundary conditions. The relevant Karhunen–Loève expansion is constructed by a special randomized singular value decomposition (SVD) of the correlation matrix which makes possible to treat problems of high dimension. The simulation results are compared against a direct Monte Carlo calculation of different Eulerian and Lagrangian statistical characteristics of the solutions. As a byproduct, we suggest an approach to solve an inverse problem of recovering the variance of the log-conductivity.

Suggested Citation

  • Shalimova Irina A. & Sabelfeld Karl K., 2017. "Stochastic polynomial chaos expansion method for random Darcy equation," Monte Carlo Methods and Applications, De Gruyter, vol. 23(2), pages 101-110, June.
  • Handle: RePEc:bpj:mcmeap:v:23:y:2017:i:2:p:101-110:n:7
    DOI: 10.1515/mcma-2017-0109
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/mcma-2017-0109
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/mcma-2017-0109?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sabelfeld, K.K. & Mozartova, N.S., 2011. "Sparsified Randomization algorithms for low rank approximations and applications to integral equations and inhomogeneous random field simulation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(2), pages 295-317.
    2. S. S. Isukapalli & A. Roy & P. G. Georgopoulos, 1998. "Stochastic Response Surface Methods (SRSMs) for Uncertainty Propagation: Application to Environmental and Biological Systems," Risk Analysis, John Wiley & Sons, vol. 18(3), pages 351-363, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James D. A. Millington & Hang Xiong & Steve Peterson & Jeremy Woods, 2017. "Integrating Modelling Approaches for Understanding Telecoupling: Global Food Trade and Local Land Use," Land, MDPI, vol. 6(3), pages 1-18, August.
    2. Oladyshkin, S. & Nowak, W., 2012. "Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 179-190.
    3. Sabelfeld, Karl K., 2018. "Stochastic projection methods and applications to some nonlinear inverse problems of phase retrieving," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 143(C), pages 169-175.
    4. Bohan, A. & Shalloo, L. & Malcolm, B. & Ho, C.K.M. & Creighton, P. & Boland, T.M. & McHugh, N., 2016. "Description and validation of the Teagasc Lamb Production Model," Agricultural Systems, Elsevier, vol. 148(C), pages 124-134.
    5. Grigoriu Mircea, 2017. "Monte Carlo algorithm for vector-valued Gaussian functions with preset component accuracies," Monte Carlo Methods and Applications, De Gruyter, vol. 23(3), pages 165-188, September.
    6. Rituparna Chutia, 2013. "Environmental risk modelling under probability-normal interval-valued fuzzy number," Fuzzy Information and Engineering, Springer, vol. 5(3), pages 359-371, September.
    7. Panos G. Georgopoulos & Christopher J. Brinkerhoff & Sastry Isukapalli & Michael Dellarco & Philip J. Landrigan & Paul J. Lioy, 2014. "A Tiered Framework for Risk‐Relevant Characterization and Ranking of Chemical Exposures: Applications to the National Children's Study (NCS)," Risk Analysis, John Wiley & Sons, vol. 34(7), pages 1299-1316, July.
    8. Pepiciello, Antonio & Domínguez-García, José Luis, 2024. "Small-signal stability analysis of uncertain power systems: A comprehensive survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    9. Corlay Sylvain & Pagès Gilles, 2015. "Functional quantization-based stratified sampling methods," Monte Carlo Methods and Applications, De Gruyter, vol. 21(1), pages 1-32, March.
    10. Oladyshkin, Sergey & Nowak, Wolfgang, 2018. "Incomplete statistical information limits the utility of high-order polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 137-148.
    11. J. Yang & B. Faverjon & D. Dureisseix & P. Swider & S. Marburg & H. Peters & N. Kessissoglou, 2016. "Prediction of the intramembranous tissue formation during perisprosthetic healing with uncertainties. Part 2. Global clinical healing due to combination of random sources," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 19(13), pages 1387-1394, October.
    12. Sabelfeld Karl & Mozartova Nadezhda, 2012. "Stochastic boundary collocation and spectral methods for solving PDEs," Monte Carlo Methods and Applications, De Gruyter, vol. 18(3), pages 217-263, September.
    13. Grigoriu Mircea, 2014. "An efficient Monte Carlo solution for problems with random matrices," Monte Carlo Methods and Applications, De Gruyter, vol. 20(2), pages 121-136, June.
    14. Shalimova Irina A. & Sabelfeld Karl K., 2014. "Stochastic polynomial chaos based algorithm for solving PDEs with random coefficients," Monte Carlo Methods and Applications, De Gruyter, vol. 20(4), pages 279-289, December.
    15. Zan Wang & Mitchell J. Small, 2016. "Statistical performance of CO 2 leakage detection using seismic travel time measurements," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 6(1), pages 55-69, February.
    16. Sabelfeld Karl K., 2016. "Vector Monte Carlo stochastic matrix-based algorithms for large linear systems," Monte Carlo Methods and Applications, De Gruyter, vol. 22(3), pages 259-264, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:mcmeap:v:23:y:2017:i:2:p:101-110:n:7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.